
DFiant: A Dataflow Hardware Description Language
Oron Port1 Yoav Etsion1,2

Electrical Engineering1 Computer Science2

Technion – Israel Institute of Technology
soronpo@campus.technion.ac.il yetsion@technion.ac.il

Abstract—Today’s dominant hardware description languages
(HDLs), namely Verilog and VHDL, tightly couple design func-
tionality with timing requirements and target device constraints.
As hardware designs and device architectures became increas-
ingly more complex, these dominant HDLs yield verbose and
unportable code. To raise the level of abstraction, several high-
level synthesis (HLS) tools were introduced, usually based on
software languages such as C++. Unfortunately, designing with
sequential software language constructs comes with a price; the
designer loses the ability to control hardware construction and
data scheduling, which is crucial in many design use-cases.

In this paper, we introduce DFiant, a Scala-based HDL that
uses the dataflow model to decouple functionality from imple-
mentation constraints. DFiant’s frontend enables functional bit-
accurate dataflow programming, while maintaining a complete
timing-agnostic and device-agnostic code. DFiant bridges the
gap between software programming and hardware construction,
driving an intuitive functional object oriented code into a high-
performance hardware implementation.

I. INTRODUCTION

Low-level hardware description languages (HDLs) such
as Verilog and VHDL have been dominating the field-
programmable gate array (FPGA) and application-specific in-
tegrated circuit (ASIC) domains for decades. These languages
burden designers with explicitly clocked constructs that do not
distinguish between design functionality and implementation
constraints (e.g., timing, target device). For example, the
register-transfer language (RTL) constructs of both Verilog and
VHDL require designers to explicitly state the behavior of
each register, regardless if it is part of the core functionality
(e.g., a state-machine state register), an artifact of the timing
constraints (e.g, a pipeline register), or an artifact of the
target interface (e.g., a synchronous protocol cycle delay).
These semantics narrow design correctness to specific timing
restrictions, while vendor library component instances couple
the design to a given target device. Evidently, formulating
complex portable designs is difficult, if not impossible. Finally,
these older languages do not support modern programming
features that enhance productivity and correctness such as
polymorphism and type safety.

Emerging high-level synthesis (HLSs) tools such as Vi-
vado HLS [1], Bluespec SystemVerilog [2], and Chisel [3]
attempt to bridge the programmability gap. While HLSs
tend to incorporate modern programming features, they still
mix functionality with timing and device constraints, or lack
hardware construction and timed synchronization control. For
example, designs must be explicitly pipelined in Chisel or
Bluespec, while a simple task as toggling a led at a given

rate is impossible to describe with C++ constructs in Vivado
HLS. Emerging HLSs, therefore, still fail to deliver a clean
separation between functionality and implementation that can
yield portable code, while providing general purpose HDL
constructs. We explore these gaps further in Section III.

In this paper, we introduce DFiant, a modern HDL whose
goal is to allow designers to express portable hardware de-
signs. DFiant continues our previous work [4] to decouple
functionality from timing constraints (in an effort to end the
”tyranny of the clock” [5]). DFiant offers a clean model for
hardware construction based on its core characteristics: (i) a
clock-agnostic dataflow model that enables implicit parallel
data and computation scheduling; and (ii) functional regis-
ter/state constructs, accompanied by an automatic pipelining
process, which eliminate all explicit register placements along
with their direct clock dependency. DFiant borrows and com-
bines constructs and semantics from software, hardware and
dataflow languages. Consequently, the DFiant programming
model accommodates a middle-ground approach between low-
level hardware description and high-level sequential program-
ming.

DFiant is implemented as a Scala library, and relies on
Scala’s strong, extensible, and polymorphic type system to
provide its own hardware-focused type system (e.g., bit-
accurate dataflow types, input/output port types). The inter-
actions between DFiant dataflow types create a dependency
graph that can be simulated in the Scala integrated develop-
ment environment (IDE), or compiled to an RTL top design file
and a TCL constraints file, followed by a hardware synthesis
process using vendor tools.

II. CONCURRENCY AND DATA SCHEDULING
ABSTRACTIONS

Concurrency and data scheduling abstractions rely heavily
on language semantics. In this section, we explore semantics
of three distinctively different languages: C++1, VHDL, and
DFiant.

Consider a function f and its implementations, as detailed
in Table I. Despite similar code appearance, the semantics are
very different, as depicted in Fig. 1. The following subsections
qualify these semantics.

1C++ is required because reference & variables are not available in C.
More advanced C++ capabilities are not always synthesizable, thus rarely
used for hardware description.



TABLE I
DATA SCHEDULING SEMANTICS EXAMPLE FUNCTION, f : DEFINITION AND IMPLEMENTATIONS

Formal Definition Functional Drawing C++ Impl.† VHDL Impl.‡ DFiant Impl.

f : (in)n∈N → (an, bn, cn, dn)n∈N

,


ak = ik + 5

bk = ak ∗ 3
ck = ak + bk

dk = ik − 1

k ≥ 0

i

a

b

c

+5

+

*3

-1 d

void f(int i,
&a,&b,&c,&d){

a = i + 5;
b = a * 3;

c = a + b;
d = i - 1;

}

f : process(clk)
begin
if rising_edge(clk)
begin
a <= i + 5;
b <= a * 3;
â <= a;--cyc delay
c <= â + b;
d <= i - 1;

end;
end process;

def f(i : DFSInt[32]) =
{

val a = i + 5
val b = a * 3

val c = a + b
val d = i - 1
(a,b,c,d) //tuple of

} //four

† Some type annotations were removed for brevity.
‡ â represents a clock cycle delay of a.

A. C++ Semantics

Sequential programming models, such as C++, do not
have concurrent semantics. Data scheduling order is set by
code statement order and cannot be pipelined2. HLS utilities
extends these languages with pragma directives that change
semantics. We observe the C++ f implementation as follows:
1) All statements are variable assignments.
2) d is independent of a , b , and c but cannot be sched-

uled concurrently. Additionally, a cannot be safely read
until f finishes. Proper pragmas allow dataflow analysis
and function inlining to overcome these limitations.

3) Time between/of the data operations is unconstrained. The
code does not restrict the functional requirement and will
maintain correctness for every hardware synthesis fitting
its semantics.

B. VHDL Semantics

The RTL programming model is concurrent. Data schedul-
ing is manual and clock-bound, while the order is set by the
assignment cycle-time. VHDL process semantics are different
for signals and variables: signals are updated when the process
ends, while variables are updated instantly. When embedded
in a signal edge-detection conditional construct, both signals
and variables can be interpreted as registers, depending on the
context. We observe the VHDL f implementation as follows:
1) All statements are synchronous signal assignments with

an explicit single-clock dependency. Clocked f imposes
time restrictions to f . Although this implementation does
not contradict the formal definition of f , its correctness is
guaranteed solely under these restrictions.

2) A latency balancing register added to maintain correctness
of the c assignment pipeline3.

3) Data is scheduled for every clock cycle, thus creating a
pipeline. Each output signal is valid at a different time.
Invalid outputs may be accessed, since VHDL has no
implicit guard semantics. More hardware is required to

2We only observe language semantics. Out-of-order or multi-processor
executions may still apply.

3We can use VHDL variable to avoid latency balancing, by forming a
combinational circuit.

â?

b?

c? c?

f data scheduling

t

a0

b0
c0

d0

t

i0

a0

b0
c0

d0
t

i0

a0

b0
c0

d0

i0

a1

d1

a?

d?

i1

b?

c?

b1

i2
a2

d2

i1
a1

b1
c1

d1

â0 â1â?

C++
Semantics
(without

HLS 
pragmas)

VHDL
Semantics

(synchronous
process)

DFiant
Semantics

f start f end

Data validity 
guaranteed
outside the 
scope of f

Clock

Fig. 1. f data scheduling semantics in C++, VHDL, and DFiant

match the output cycle-latencies, and implement explicit
guards.

4) The implementation is very fragile and has limited reusabil-
ity. Foremost, VHDL process construct alone is not
reusable and requires an entity-architecture encapsulation
for structural instantiation. Additionally, f is tightly-
coupled to clk timing and logic propagation delay. The
slightest change in requirements or target device can lead
to a painful redesign.

C. DFiant Semantics

DFiant has a dataflow programming model. Data scheduling
order, or token-flow, is set by the data dependency. Essentially,
the DFiant semantics schedules all independent dataflow ex-
pressions concurrently, while dependent operations are synthe-
sized into a guarded FIFO-styled pipeline. Dataflow branches
are implicitly forked and joined. Semantically, unused nodes,
always consume tokens and are discarded during compilation.
We observe the DFiant f implementation as follows:



1) All expressions are dataflow variable declarations.
2) Concurrency is implicit. Function f is coded intuitively

in a sequential manner, since dataflow dependencies are
oblivious to statement order.

3) Data scheduling is implicitly guarded by data dependen-
cies. For example, a is forked into both b and c
operations, while c joins branches from a and b . It is
impossible to read an invalid result or an old result (without
extending semantics further).

4) DFiant semantics are intuitive: data is consumed only when
it is ready and can be accepted by all receiving nodes, while
back-pressure prevents data loss.

D. Comparing Semantics

When comparing DFiant and VHDL, it is evident that
DFiant is less verbose and has better semantics for code
reuse. The DFiant compiler generates a hardware description
that respects the design, timing, and target device constraints,
in contrast to the given VHDL implementation which is
equivalent to a singular possible DFiant code compilation for
a given set of constraints. DFiant prevents f users from
reading invalid values, while in VHDL it must be programmed
explicitly. Bluespec and Chisel have similar semantics to
VHDL, thus suffer from related limitations (e.g., explicit
pipelining). Fortunately, they both can provide guarded types
that prevent invalid data use.

When comparing DFiant and C++, we observe that C++
HLS tools rely on code analysis and pragma directives to
change the semantics of their sequential code, while DFiant
has its own dataflow type system that guarantees its seamless
concurrent semantics. Consequently, C++ HLS tools limit
language constructs and hierarchies which are not supported
by the analysis algorithms (e.g., recursion), in contrary to
DFiant which supports all finite Scala constructs (e.g., finite
generation loops and recursions).

Contrarily, tandem operations are described more naturally
in C++, and loops are utilized to describe repetitive dependent
tasks. With proper pragmas, C++ loop iterations can run
concurrently, but since they can also run sequentially, loops,
and nested loops especially, may be semantically confusing.
For this reason, DFiant does not support loops, same as VHDL
(hardware generation loops are supported), and opts for state
machine semantics to describe sequential operations.

III. RELATED WORK

Recent studies [6] [7] [8] surveyed a variety of HDLs
and HLS tools. Neither survey had explicit conclusion which
tool or language should be used for hardware design. Earlier,
we focused on comparing DFiant to VHDL and C++-based
HLS. In this section, we further contrast DFiant to a few key
hardware design languages and tools.

Chisel, SpinalHDL, and VeriScala: Chisel [3], Spinal-
HDL [9], and VeriScala [10] are Scala-based libraries that
provide advanced HDL constructs. When compared to DFiant,
all three DSL libraries resemble RTL semantics by implicitly
or explicitly acknowledging existence of clocked registers, and

do not auto-pipeline designs. Moreover, DFiant is an early-
adopter of new Scala features such as literal types [11] and
operations [12], which further improve type safety (e.g., a
DFBits[5].bits(Hi,Lo) bit selection is compile-time-

constrained within the 5-bits vector width confines).
Synflow Cx: Synflow developed Cx [13] as a designer-

oriented HDL with new language semantics that better fit
hardware design than the classic C syntax. However, the
concurrency in Cx limits dataflow description flexibility. A
fence statement is required to force a new cycle. This

statement affects all variables within a task . To avoid this,
separate tasks are required, which limits functional clustering
in a single task. Moreover, Cx is not object-oriented and has
a limited type-system.

MyHDL: MyHDL [14] is a Python-based HDL. MyHDL
favors verification capabilities over purely synthesizable hard-
ware constructs, in contrary to our approach in DFiant. Since
MyHDL is based on Python, it also lacks type-safety. MyHDL
does not support automatic pipelining.

Bluespec: Bluespec uses concurrent guarded atomic ac-
tions to create rules that derive hardware construction. Blue-
spec’s rules are atomic and execute within a single clock
cycle. Consequently, the rule semantics bound the design to
the clock, and if the design does not meet timing constraints,
the rules system must be modified.

Vivado HLS: Vivado HLS [1] is a mature tool that helps
achieve high productivity in some domains. Nevertheless, it
is not accepted as a general purpose HDL, since its C/C++
semantics are unfitting [15] and its SystemC synthesizable
constructs provide roughly identical capabilities of traditional
HDLs [16].

Maxeler: The Maxeler framework [17] and its MaxJ
Java-based programming language take part in acceleration
systems. MaxJ is dataflow-centric, same as DFiant, but is
tailored for its target use-case and does not fit as a general
purpose HDL.

DFAnyVal
DFAnyVar

DFBits
DFBits.Var

DFBool

DFUInt DFSInt DFStruct

DFArray

DFEnum

Fig. 2. DFiant dataflow types: simplified inheritance diagram

IV. THE DFIANT TYPE SYSTEM

DFiant is a Scala library, hence it inherently supports type
safe and rich language constructs. DFiant brings type driven
development concepts to hardware design, by creating an
extensible dataflow class hierarchy, with the trait DFAny at
its head. DFAny contains all properties that are common
to every dataflow variable. Fig. 2 illustrates a simplified
inheritance diagram of DFiant’s dataflow types.



class AES_DFKeySchedule(Nk: Int, Nb: Int, Nr : Int)
extends AES_DFWords(Nb*(Nr+1)){
val Rcon = Array[Int](0x00000000, ...)
def KeyExpansion(key : AES_DFKey): Unit = {
val temp = AES_DFWord()

for (i <- 0 until Nk)
this(i) := key(i)

for (i <- Nk until Nb*(Nr+1)) {
temp := this(i-1)
if (i % Nk == 0)

temp := temp.RotWord().SubWord() ˆ Rcon(i / Nk)
else if ((Nk > 6) && (i % Nk == 4))

temp := temp.SubWord()

this(i) := this(i-Nk) ˆ temp

}
} }

(a) DFiant code

//comment line for alignment
//comment line for alignment
Rcon = [00000000, ...]
KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk) begin
word temp
i = 0
while (i < Nk)
w[i] = word(key[4*i],key[4*i+1],key[4*i+2],key[4*i+3])
i = i+1

end while
i = Nk
while (i < Nb * (Nr+1)]
temp = w[i-1]
if (i mod Nk = 0)
temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]

else if (Nk > 6 and i mod Nk = 4)
temp = SubWord(temp)

end if
w[i] = w[i-Nk] xor temp
i = i + 1

end while
end

(b) AES spec. pseudo code reference

Fig. 3. AES KeyExpansion code example

Fig. 3 depicts part of our DFiant Advanced Encryption
Standard [18] (AES) cipher implementation alongside its spec-
ification pseudo code reference. The DFiant code is similar
or even simpler in comparison and does not employ global
functions. We compared the complete DFiant AES code to
three RTL designs [19] [20] [21]. DFiant provides the same
functionality with 33-50% lines of code. Furthermore, the DFi-
ant code is timing-agnostic and device-agnostic, thus tasking
the compiler to construct the hardware fitting the target device
and non-functional requirements (e.g., throughput, latency).
When constrained by the appropriate target throughput, the
DFiant compiler generated an RTL design that acheived better
performance than the cited RTL designs.

V. CONCLUSION

In this paper, we presented DFiant, a dataflow HDL, and
exposed its advantageous semantics compared to modern
RTLs and C++-based HLS tools (e.g., VHDL and Vivado
HLS). DFiant provides a seamless concurrent programming
approach, and yet it still facilitates a versatile compositional
and hierarchical expressiveness.

So far, we demonstrated how DFiant covers static one-to-
one pure token transfer functions. Notwithstanding, function-
ality may require state (e.g., state-machine), upsampling (e.g.,
duplicate each token), downsampling (e.g., drop every third
token), token arrival time dependency (e.g., priority round-
robin arbiter), or token value dependency (e.g., filter out odd-
valued tokens). Future work may explore expanding control
over token generation and consumption.

REFERENCES

[1] Xilinx, “Vivado High Level Synthesis User Guide,” 2015.
[2] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high

level specifications,” in ACM/IEEE Intl. Conf. on Formal Methods and
Models for Co-Design, 2004.

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing Hardware in a
Scala Embedded Language,” in ACM/EDAC/IEEE Design Automation
Conference (DAC), 2012.

[4] O. Port, “CAFEO: A Dataflow, Device-agnostic, Synthesizable
Hardware Description Language,” Master’s thesis, 2015. [Online].
Available: http://library.technion.ac.il/thesis/ele/2619627.pdf

[5] I. Sutherland, “The tyranny of the clock,” Comm. ACM, vol. 55, no. 10,
pp. 35–36, 2012.

[6] N. Kapre and S. Bayliss, “Survey of domain-specific languages for
FPGA computing,” in Intl. Conf. on Field Programmable Logic and
Applications, 2016.

[7] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A Survey
and Evaluation of FPGA High-Level Synthesis Tools,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 10, pp. 1591–1604, 2016.

[8] S. Windh, X. Ma, R. J. Halstead, P. Budhkar, Z. Luna, O. Hussaini, and
W. A. Najjar, “High-level language tools for reconfigurable computing,”
Proc. of the IEEE, vol. 103, no. 3, pp. 390–408, 2015.

[9] P. Charles, “SpinalHDL,” 2016. [Online]. Available: http://spinalhdl.
github.io/SpinalDoc

[10] Y. Liu, Y. Li, W. Xiong, M. Lai, C. Chen, Z. Qi, and H. Guan, “Scala
Based FPGA Design Flow (Abstract Only),” in Intl. Symp. on Field
Programmable Gate Arrays, 2017.

[11] E. Osheim, G. Leontiev, J. Pretty, L. Hupel, M. O’Connor,
M. Sabin, and T. Switzer, “Typelevel Scala,” 2017. [Online]. Available:
https://github.com/typelevel/scala

[12] F. S. Thomas, M. Pocock, N. Aoyama, and O. Port, “singleton-
ops library,” 2017. [Online]. Available: https://github.com/fthomas/
singleton-ops

[13] Synflow, “Cx Language,” 2014. [Online]. Available: http://cx-lang.org/
[14] J. Decaluwe, “MyHDL: a python-based hardware description language,”

Linux Journal, vol. 2004, no. 127, 2004.
[15] Z. Zhao, “Using Vivado-HLS for Structural Design : a NoC Case Study,”

in Intl. Symp. on Field Programmable Gate Arrays, 2017.
[16] D. Gajski, T. Austin, and S. Svoboda, “What input-language is the best

choice for high level synthesis (HLS)?” in ACM/EDAC/IEEE Design
Automation Conference (DAC), 2010.

[17] O. Pell and O. Mencer, “Surviving the end of frequency scaling
with reconfigurable dataflow computing,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 4, 2011.

[18] NIST, “Advanced Encryption Standard (AES),” Federal Information
Processing Standards Publication, vol. 197, no. 441, 2001.

[19] S. Das, “Fully Pipelined AES Core,” 2010. [Online]. Available:
https://opencores.org/project,aes pipe

[20] H. Hsing, “AES Core Specification,” 2013. [Online]. Available:
http://opencores.org/usercontent,doc,1354351714

[21] A. Salah, “128 bit AES Pipelined Cipher,” 2013. [Online]. Available:
http://opencores.org/usercontent,doc,1378852274


