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Abstract—Locality is often characterized by working sets, defined by Denning as the set of distinct addresses referenced within a

certain window of time. This definition ignores the fact that dramatic differences exist between the usage patterns of frequently used

data and transient data. We therefore propose to extend Denning’s definition with that of core working sets, which identify blocks that

are used most frequently and for the longest time. The concept of a core motivates the design of dual-cache structures that provide

special treatment for the core. In particular, we present a probabilistic locality predictor for L1 caches that leverages the skewed

popularity of blocks to distinguish transient cache insertions from more persistent ones. We further present a dual L1 design that

inserts only frequently used blocks into a low-latency, low-power, direct-mapped main cache, while serving others from a small fully

associative filter. To reduce the prohibitive cost of such a filter, we present a content addressable memory design that eliminates most

of the costly lookups using a small auxiliary lookup table. The proposed design enables a 16K direct-mapped L1 cache, augmented

with a small 2K filter, to outperform a 32K 4-way cache, while at the same time consumes 70-80 percent less dynamic power and

40 percent less static power.

Index Terms—Core working sets, random insertion policy, mass-count disparity, L1 cache, cache insertion policy, dual-cache design,

cache filtering
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1 INTRODUCTION

MEMORY system performance places a limit on computa-
tion rates due to the large gap between processor and

memory speeds. The typical approach to alleviate this
problem is to increase the capacity of L1 and L2 caches. This
solution, however, also increases the power consumed by
the caches. The problem is further exacerbated by the shift
toward using chip multiprocessors and the ensuing
replication of L1 caches for each core. These developments
motivate attempts for better utilization of cache resources,
through the design of more efficient caching structures. This
in turn relies on extensive analysis of memory workloads
and a deeper understanding of cache behavior.

The essence of caching is to identify and store those data
items that will be most useful in the immediate future.
Denning formalized this using the notion of a working set,
defined to be those items that were accessed within a
certain number of instructions [7]. We make the observation
that memory workloads are highly skewed, with a small
“core” of the working set servicing the majority of
references. At the same time, many other cache blocks are
only accessed a small number of times, in a bursty manner.
This means that the success of caches can be based not only
on locality in space and time, but also on exploiting the
skewed popularity of different cache blocks.

The fact that memory references are highly skewed is
well known. But our analysis reveals that the skew in block
popularity is more extreme than previously thought, and
exhibits the statistical phenomenon of mass-count disparity.
This indicates that the majority of references are concen-
trated in the core, which therefore may dominate system
performance. It may therefore be beneficial to use separate
structures to serve the core blocks in the most efficient
manner possible.

The idea that blocks be classified according to access
patterns suggests a need to maintain historical data. But
with strong mass-count disparity, we find that stateless
random sampling suffices to make useful probabilistic
classifications: since most memory references are serviced
by a small fraction of the working set, randomly selected
references will likely identify very popular core blocks.

Given such a sampling-based predictor, we design a dual1

structure in which popular blocks are handled differently
from the rest. Consider the data in Fig. 1. This shows that set-
associative caches actually service most of the references—-
namely those to the highly popular blocks—from the cache
sets’ most recently used (MRU) position.2 These caches thus
effectively function as direct-mapped caches, while incur-
ring set-associative latency and power consumption. But
once we identify popular blocks, we can use a direct-mapped
structure explicitly, reducing latency and power consump-
tion. The rest of the references are serviced from a small fully
associative auxiliary filter, thereby avoiding conflict misses
in the direct-mapped cache. In addition, we introduce the
Wordline Look-aside Buffer (WLB), a small lookup table that
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1. We use the term dual cache to differentiate it from a split cache, used to
split the data and instructions streams.

2. Fig. 1 specifically emphasizes the effect of temporal locality, as repeated
accesses to the same memory block were collapsed into a single memory
access.
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harnesses temporal locality to eliminate the vast majority of

expensive lookups in the fully associative filter, without

affecting the fully associative semantics. The result is a win-

win design, which both improves overall performance and

reduces power consumption.
This paper expands on the above ideas and the authors’

previous work [10], [11], [12]. Section 2 explains and

quantifies mass-count disparity. Section 3 reviews motiva-

tion and related work on dual structures. Section 4 provides

details of the probabilistic predictor. Given all the above,

Section 5 presents and evaluates our design for a filtered

L1 cache. Lastly, Section 6 reviews related work and

Section 7 presents our conclusions.

2 THE SKEWED POPULARITY OF MEMORY

LOCATIONS

Locality of reference is one of the best known phenomena of
computer workloads. This is usually divided into two
types: spatial locality, namely, accesses to addresses that are
near an address that was just referenced, and temporal
locality, which is repeated references to the same address.
Temporal locality is actually the result of two distinct
phenomena. One is the skewed popularity of different
addresses, where some are continuously referenced over
time, while others are only referenced a few times [15]. The
other is correlation in time: accesses to the same address
occur together in bursts of activity, rather than being
distributed uniformly through time. While the intuition of
what “temporal locality” means tends to the second of
these, the first is actually the more important effect.

2.1 Cache Residency Length: A New Metric for
Temporal Locality

The common block popularity metric rates memory blocks
based on the number of times they are accessed during a
reference window of predetermined size. The major caveat
of this metric is that it considers all the references made to
an address, whereas for caching studies, references clustered
in time may be more important. In addition, the arbitrary
sized windows may or may not be aligned with program
phases, thus possibly amplifying inaccuracies.

We therefore propose not to use a predefined window,
but rather to count the number of references made
between a block’s insertion into the cache and its
subsequent eviction. This is denoted the cache residency
length. Thus, if a certain block is referenced 100 times
when it is brought into the cache, is then evicted, and then
is referenced 200 times when brought into the cache again,
we will consider this as two distinct cache residencies
spanning 100 and 200 references, respectively.

One deficiency of the cache residency length metric is its
dependence on the specific cache configuration. It is
therefore important to remain consistent when comparing
results. The results shown here are based on a 16K direct-
mapped configuration. We also consistently define memory
objects to be 64 bytes long, because this is the most common
size for a cache line.

2.2 Mass-Count Disparity in L1 Workloads

Histograms of the distribution of residency lengths for a
couple SPEC2000 benchmarks are shown in Fig. 2 (for 16 KB
direct-mapped caches as specified above). These show the
distribution of residency lengths and the distribution of
references to these residencies, up to residency lengths of
250 references, using buckets of size 10. Longer residencies
(and references therein) are bunched together in the last bar
on the right. This leads to characteristic bimodal distribu-
tions, where residencies are seen to be short (seldom more
than 50 references), but most references belong to residen-
cies that are longer than 250 references. While not universal,
this pattern repeats in many cases.

A better quantification is possible using mass-count
disparity plots (Fig. 3) [13]. These plots superimpose the
cumulative distribution functions (CDFs) of the two
distributions in the above histograms. The first, called the
count distribution, is the distribution of cache residency
lengths, and FcðxÞ is the probability that a residency has
x references or less. The second, called the mass distribution,
describes how the references are distributed among these
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Fig. 1. Fraction of accesses serviced by the most recently used block in
the cache sets for various cache sizes, with 4-way set-associative
caches and 64B cache lines. Boxes indicate the 25th to 75th percentiles
over 20 SPEC benchmarks, with whiskers extending to the minimum
and maximum.

Fig. 2. Histograms of residency lengths for select SPEC benchmarks (ref data set).



residencies. Thus, FmðxÞ represents the probability that a
reference is part of a residency that has x references or less.

Mass-count disparity occurs when the two distributions
diverge. a well-known example of this phenomenon is the
distribution of wealth [19]: most people are relatively poor,
and only a few are very rich, so the majority of wealth in the
world belongs to a very small fraction of the population.
Analogously, most residencies are short and only a few
are very long, so the majority of references are targeted at
a very small fraction of the residencies (and hence
memory blocks).

Fig. 3 shows examples for the vortex and mesa bench-
marks from the SPEC2000 suite. The simplest metric for
quantifying the disparity is the joint ratio, which is the
unique point where the sum of the two CDFs is unity (if the
CDFs have a discrete mode, as sometimes happens, the sum
may be different) [13]. For example, in the case of the mesa
benchmark data stream, the joint ratio is 10/90. This means
that 10 percent of the cache residencies, and more
specifically those that are highly referenced, service a full

90 percent of the references, whereas the remaining
90 percent of the residencies service only 10 percent of the
references—a precise example of the proverbial 10/90
principle. Thus, a typical residency is only referenced a
small number of times (up to 10 or 20 in this case), whereas
a typical reference is directed at a long residency (one that is
referenced thousands of times).

Two other important metrics in the context of dual-cache
designs are W1=2 and N1=2. W1=2 assesses the combined
weight of the half of the residencies that receive the fewest
references. For mesa, these 50 percent of the residencies
together get only 2.05 percent of the references. These
represent blocks that are inserted into the cache but hardly
accessed, causing inefficient cache use. Instead, caches
should preferably be used to store longer residencies, such
as those that together account for 50 percent of the
references. As quantified by the N1=2 metric, in mesa these
are just 0.2 percent of the residencies.

Mass-count disparity metric values are listed in Table 1

for all 20 benchmarks analyzed. The table also indicates the

ETSION AND FEITELSON: EXPLOITING CORE WORKING SETS TO FILTER THE L1 CACHE WITH RANDOM SAMPLING 1537

Fig. 3. Mass-count disparity plots for memory accesses in select SPEC benchmarks (ref data set).

TABLE 1
N1=2, W1=2, and Joint Ratio Metric Values for both Data and Instruction Streams of the SPEC2000 Benchmarks Used



maximal residency length included in W1=2, the minimal
residency length included in N1=2, and the residency length
where the joint ratio occurs (marked by the @ values). These
results generally indicate significant mass-count disparity.
For data streams, the table reveals that half of the references
are serviced by less than 2 percent of all residencies, in 12 of
the 20 benchmarks. The disparity is less apparent in
benchmarks known for their poor cache utilization, such as
mcf, art, swim, and lucas. For example, almost 96 percent of
mcf’s residencies contain up to five references, but still they
account for over 70 percent of the references. This leads to a
joint ratio of 33/67, and relatively high W1=2 and N1=2

values—with half the residencies accounting for�25 percent
of the mass, and half the mass centered in�17 percent of the
residencies. But with the longest 3 percent of the residencies
incorporating 30 percent of the mass, even mcf still exhibits
some degree of disparity.

In the case of instruction streams, the results tend to be
more extreme than for data streams. The joint ratios are
�26=74 and up, with several higher than 5/95. This is a
manifestation of the rule of thumb that programs spend
most of the time executing a small fraction of their code. The
highest W1=2 values are �11 percent, and most are much
lower, indicating that the short residencies service only a
small fraction of all references. The N1=2 values are
generally even lower, indicating the long residencies
dominate the reference stream, and that the majority of
references are directed at a small fraction of the working set.
The only exception is mcf where N1=2 ¼ 10:7%. This stems
from mcf’s exceptional code density, which results in a very
small number of distinct instruction blocks accessed
throughout the execution, so all residencies are longer than
105 references.

The above results may be expected to depend on cache
size. Intuitively, larger caches will experience fewer evic-
tions and thereby merge consecutive residencies of the
same block into a single, longer residency. The resulting

increase in residency lengths will shift the mass distribution
toward longer (core) residencies. Hence, the fraction of the
overall mass in the shorter 50 percent of the residencies
(W1=2) will decrease as caches get bigger, and so will the
fraction of long residencies needed for 50 percent of the
mass (N1=2).

Fig. 4 shows the effect of cache size on W1=2 and N1=2

for the data streams of SPEC2000 benchmarks (instruction
streams produced similar results). As expected, while the
effect is not large, the metrics do tend to decrease as cache
sizes increase. The exceptions to this rule are gcc, swim,
and lucas for W1=2, and swim for N1=2. The reason for this
is that these benchmarks exhibit intrinsic access patterns
that result in short residencies, regardless of the cache
size. For example, gcc’s intrinsics lead to �90 percent of its
residencies being shorter than eight references. The
increase in cache size and ensuing merging of multiple
consecutive residencies only merge these clusters of
8-reference that were broken into multiple residencies
into a single 8-reference residency. Therefore, residencies
of length 8 constitute �89 percent of the residencies in a
4 KB cache and �94 percent of the residencies in a 64 KB
cache. The end result is that the shorter 50 percent of the
residencies in a 64 KB cache constitute of more residencies
of length 8, which increases their overall mass.

Fig. 4 demonstrates that our metrics are robust across
multiple cache sizes and even capture the movement of
residencies from pollution to core. In addition, while the
results shown here focus on direct-mapped caches, similar
results are obtained for 4-way set-associative caches [10].
Together, they confirm the effectiveness of the metrics in
providing a better understanding of cache workloads.

2.3 Definition of Core Working Sets

Denning’s definition of working sets is based on the
principle of locality, which he defined to include a slow
change in the reference frequency to any given page [7], [8].
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Fig. 4. The effect of cache size, ranging from 4 to 64 KB, on the W1=2 (top) and N1=2 (bottom) statistics for the data streams of SPEC2000
benchmarks.



Our data, however, demonstrate the continued access to the
same high-use memory objects, while much of the low-use
data are only accessed for very short and intermittent time
windows. In addition, transitions between phases of the
computation may be expected to be sharp rather than
gradual, and moreover, they will probably be correlated for
multiple memory objects. This motivates a new definition
that focuses on the persistent high-usage data in each phase.
We thus define the core working set to be those blocks that
appear in the working set and are reused “a significant
number of times.”

The simplest interpretation of this definition is based on
counting the number of references to a block during a single
cache residency. The number of references needed to
qualify can be decided using data such as that presented
in Figs. 2 and 3. For example, we can set the threshold so
that for most benchmarks, it will identify no more than
5 percent of the residencies, but more than 50 percent of the
references. For typical residency length distributions, such a
threshold would be 100-1,000 references.

While the skewed distribution of popularity is a major
contributor to temporal locality, one should nevertheless
acknowledge the fact that references do display a bursty
behavior. To study this, we looked at how many different
blocks are referenced between successive references to a
given block. The results indicate that the majority of inter-
reference distances are indeed short. We can then define
bursts to be sequences of references to a block that are
separated by references to less than say 256 other blocks.
Using this, we can study the distribution of burst lengths,
and find them to be generally short, ranging up to about
32 references for most benchmarks. However, they are long
enough to discourage the use of a low threshold to identify
blocks that belong to the core working set with confidence.
Again, this points to a threshold of 100 or more.

The effect of the above definitions is illustrated in Fig. 5.
The figure shows the Denning working set for a window of
1,000 instructions, and the core working set as defined by a
threshold of 16 references to a block (denoted 16B in the
legend). The core working set is indeed much smaller,
typically being just 10-20 percent of the Denning working
set. Importantly, it eliminates all of the sharp peaks that

appear in the Denning working set. Nevertheless, as shown
in the bottom graph, it routinely captures about 60 percent
of the memory references.

3 CACHE BYPASS AND DUAL STRUCTURES

We have established that memory blocks can be roughly
divided into two groups: the core working set, which
includes a relatively small number of blocks that are
accessed a lot, and the rest, which are accessed few times
in a bursty manner. The question is how this can be used to
improve caching.

3.1 The Advantage of Cache Bypass

The principle behind optimal cache replacement is simply
to replace the item that will not be used for the most time in
the future (or never) [3]. In particular, it is certainly possible
that the optimal algorithm will decide to replace the last
item that was brought into the cache. This would indicate
that this item was inserted into the cache only as part of the
mechanism of performing the access, and not in order to
retain it for future reuse.

Analyzing the reference streams of SPEC benchmarks
indicates that this behavior does indeed occur in practice.
For example, we found that if the references of the gcc
benchmark were to be handled by a 16 KB fully associative
cache, 30 percent of insertions would belong to this class; in
other benchmarks, we saw results ranging from 13 percent
to a whopping 86 percent. Returning to gcc, if the cache is
4-way set associative, the placement of new items is much
more restricted, and a full 60 percent of insertions would be
immediately removed by the optimal algorithm. These
results imply that the conventional wisdom favoring the
LRU replacement algorithm is debatable.

It is especially easy to visualize why LRU may fail by
considering transient streaming data. When faced with such
data, the optimal algorithm would dedicate a single cache
line for all of it, and let the data stream flow through this
cache line. All other cache lines would not be disturbed.
Effectively, the optimal algorithm thus partitions the cache
into the main cache (MC) (for core nonstreaming data) and
a cache bypass for the streaming component (noncore). The
LRU algorithm, in contradistinction, would do the opposite
and lose all the cache contents.
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Fig. 5. Examples of memory access patterns and the resulting Denning and core working sets.



The advantage of a cache bypass mechanism can be
formalized as follows, using a simple, specific example cache
configuration. Assume a cache with n2 þ n cache lines, and
an address space partitioned into n equal-size disjoint
partitions. The cache is organized in either of two ways:

Set associative. There are n sets of nþ 1 cache lines each,
and each serves a distinct partition of the address space.
This is the commonly used approach.

Bypass. There are n sets of n cache lines each, used as
above. The nþ 1th set can accept any address and serves as
a bypass.

These two designs expose a trade-off. In the set-
associative design, each set is larger by 1, reducing the
danger of conflict misses. In the bypass design, the extra set
is not tied to any specific address, increasing flexibility.
However, it is relatively easy to see that the bypass design
has the advantage. Formally, this is shown by two claims.

Claim 1. The bypass design can simulate the set-associative
design.

Proof. While each cache line in the bypass set can hold
any address from the address space, we are not
required to use this functionality. We can limit each
cache line to one of the partitions, so the effective
space available for caching each partition becomes
nþ 1, as in the set-associative design. Thus, the bypass
design need never suffer more cache misses than the
set-associative design. tu

Claim 2. There exist access patterns that suffer arbitrarily more
cache misses when served by the set-associative design than
when served by the bypass design.

Proof. An access pattern that provides such an example is
the following: repeatedly access 2n addresses from any
single partition in a cyclic manner m times. When using
the set-associative design, only a single set with n cache
lines will be used. At best, an arbitrary subset of n� 1
addresses will be cached, and the other nþ 1 will share
the remaining cell, leading to a total of OðnmÞ misses.
When using the bypass design, on the other hand, all
2n addresses will be cached by using the original set and
the bypass set. Therefore, only the initial 2n compulsory
misses will occur. By extending the length of this
pattern (i.e., by increasing m), any arbitrary ratio can
be achieved. tu
More generally, the number of sets and the set sizes need

not be the same. The size of the bypass set need also not be
the same as that of all the other sets.

3.2 Related Work on Dual Structures

The skewed distribution of references seems to match the
LRU cache replacement scheme. Core blocks are not evicted
because they are referenced again and again, bumping them
back to the top of the stack each time (Fig. 6). If the cache is
big enough, transient blocks that enjoy a burst of activity can
also be retained till this activity ends. Skew also explains
random eviction (which may be used in set-associative
caches [28], [29]), because if you select a cache residency at
random, it is most probably a short residency. Long
residencies are rarer, and therefore less likely to be evicted.

Nevertheless, core residencies may still be evicted by
mistake. Although frequently accessed blocks will be

quickly reinserted into the cache, the first access after the
eviction will incur a cache miss. The desire to reduce such
mistakes is one of the motivations for using dual-cache
structures. Our design described in Section 5 is explicitly
based on the skewed distribution of residency lengths,
where one part of the cache is used for the core data, while
the more transient data are filtered. This is a generalization
of the cache bypass considered above.

Many similar schemes have been proposed in the
literature [27]. Many of them are based on an attempt to
identify and provide support for blocks that display
temporal locality—in effect, the more popular blocks that
are reused time and again. For example, Rivers and Davidson
propose to tag cache lines with a temporal locality bit [26].
Initially, lines are stored in a small nontemporal buffer (in our
terminology, this is the bypass area). If they are reused, the
temporal bit is set indicating that, in our terminology, these
lines should be considered as core elements. Later, when a
line with the temporal bit set is fetched from memory, it is
inserted into the larger temporal cache.

Park et al. also use a spatial buffer to observe usage [22].
However, they do so at different granularities: when a word
is referenced, only a small subline including this word is
promoted to the temporal cache. McFarling’s dynamic
exclusion cache augments cache lines with two state bits,
the last-hit bit and the sticky bit [20]. The sticky bit is used to
retain a desirable cache line rather than evicting it upon a
conflict; the conflicting line is served directly to the
processor without being cached. However, this approach
is limited to instruction streams and specifically to cases
where typically only two instructions conflict with each
other. A more extreme approach is the bypass mechanism of
Johnson et al. [16]. This is based on a memory address table
(MAT) which counts accesses to different areas of memory.
Then, if a low-count access threatens to displace a cached
high-count datum, it is simply loaded directly to the register
file bypassing the cache. Another scheme is the Assist cache
used in the HP PA 7200 CPU [5], which filters out streaming
(spatial locality) data based on compiler hints.

The above schemes have the drawback of requiring
historical information to be maintained for each cache line.
This is avoided by Walsh and Board, who propose a dual
design with a direct-mapped main cache and a small fully
associative filter [33]. Referenced data are first placed in the
filter, and only if it is referenced again it is promoted to the
main cache. This avoids polluting the cache with data that
are only referenced once, but our data indicate that a much
higher threshold is needed. Indeed, this is the basis for the
design we propose below.
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Fig. 6. Operation of an LRU cache is implicitly based on the notion that

core elements will be reused before they drop out of the cache.



A somewhat different approach is provided by Jouppi’s
victim cache, which is a small auxiliary cache used to store
lines that were evicted from the main cache [17]. This
helps reduce the adverse effect of conflict misses, as the
fully associative victim buffer effectively increases the size
of the most heavily used cache sets. In this case, the added
structure is not used to filter out transient data, but rather
to recover core data that were accidentally displaced by
transient data.

4 PROBABILISTIC PREDICTION OF TEMPORAL

LOCALITY

Mass-count disparity implies that the working set is not
evenly used, but is rather focused around a core serving the
majority of references. This has important consequences for
random sampling. Specifically, if you pick a residency at
random, there is a good chance that it is seldom referenced.
But if you pick a reference at random, there is a good chance
that this reference refers to a block that is referenced very
many times, thus belonging to the core of the working set.

Identifying the core can be used to implement a cache
insertion policy that will prevent transient blocks from being
inserted into the cache and polluting it. The length of a
cache residency can serve as a metric for cache efficiency,
with longer residencies indicating better efficiency, since
the initial block insertion overhead (latency and power) is
amortized over many cache hits. The insertion policy
should therefore be based on a residency length predictor,
that will be used to predict whether inserting a block into
the cache would be beneficial. As noted above, length is the
very characteristic that allows the desired residencies to be
identified using random sampling.

4.1 Identifying an Effective Subset of Blocks

Belady’s optimal replacement policy [3] does not handle
dual-cache structures. Moreover, Brehob et al. have shown
that optimal cache replacement is NP-Hard for dual caches
in which one component is fully associative and the other is
set associative or direct mapped [4]. Thus, we cannot expect
optimal algorithms to be implementable, and optimality
cannot be used as an evaluation criterion.

An alternative approach is to evaluate cache filtering
from a cost/gain perspective, trying to find the minimal
core working set of residencies that will effectively

maximize gain. In this framework, the cost can be defined
as the fraction of all residencies included in the core
working set, and the gain can be defined to be the fraction of
all references subsumed by the residencies in the core.
Alternatively, the cost of the core working set can be
regarded as the size of the cache needed to accommodate it,
and the gain as the hit rate achieved.

The trade-off between the cost and gain here is obvious.
Inserting all residencies to the core will service all
references from the core (100 percent gain), but will also
require a cache of maximal size (100 percent cost). On the
other hand, leaving the core empty will minimize the
number of residencies included in the core (0 percent cost),
but will serve no references from the core as well (0 percent
gain). Balancing the two opposite goals requires a threshold
parameter for the minimal residency length that should be
considered part of the core. This can be done by finding a
threshold that maximizes the average gain, i.e., gaincost . But in
the case at hand, this goal translates directly to finding a
threshold that maximizes the average residency, defined as
core references
core residencies . Due to monotonicity, this is obviously max-
imized by only including the longest residency in the core
working set.

The proposed strategy is therefore to use the threshold that
maximizes the difference between the fraction of references
handled by the core, and the fraction of residencies included
in the core, namely, core references=R� core residencies=B,
where R is the total number of references, and B the total
number of residencies. All residencies whose length is longer
than the threshold are considered part of the core working set.
Interestingly, the desired threshold is very simple:

Claim 3. Setting the core threshold to the average residency length
maximizes the target function core references=R�
core residencies=B, whereR is the total number of references,
and B the total number of residencies.

Proof. Given R the total number of references, and B the
total number of residencies, we can sort the residencies
according to length from the shortest to the longest. Let
lenðiÞ denote the length of the ith shortest residency. The
sorting guarantees that lenðiÞ � lenðiþ 1Þ for all i. Mass-
count disparity plots can then be plotted as a function of
the residency indices, as shown in Fig. 7. In this plot
style, the cumulative probabilities of the count and mass
at the ith residency are
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Fig. 7. Demonstration of the maximal effectiveness threshold. Left: the mass-count plot for vortex. Right: same data plotted as a function of the

residency index, where residencies are sorted by size. Double arrow indicates the point where the difference between the distributions is maximized.



countðiÞ ¼
Xi

j¼1

1

B
¼ i

B
and massðiÞ ¼

Xi

j¼1

lenðjÞ
R

;

respectively. Hence, the ith residency adds 1
B to the count

distribution, and lenðiÞ
R to the mass. Therefore, given that

lenðiÞ
R is monotonically nondecreasing, the gap between the

two distributions grows monotonically while lenðiÞ
R < 1

B ,
narrows when lenðiÞ

R > 1
B , and peaks at the average

residency length

threshold ¼ len ¼ R
B
:

While this may not be integral, it can still serve as a
threshold for the residency lengths. Furthermore, mono-
tonicity of the gap dynamics assures that the threshold
represents the global maximum. tu
The average residency length thus represents a unique

equilibrium point that maximizes the effectiveness of the
core working set: any different proposed subset of
residencies will inevitably replace a block in the core with
one not belonging to the core, and will thus replace a long
residency with shorter one—thereby reducing the number
of references that will be served by the core. In the case of
vortex, shown in Fig. 7, the threshold indicates that
�9 percent of all residencies be in the core, and they serve
�84 percent of all references.

Note also that using a threshold actually relaxes the
requirements from the residency length predictor, as it does
not have to predict the actual length of a residency, but
rather produce a binary prediction stating whether the
residency is likely to be longer than the threshold or not.

4.2 Probabilistic Residency Length Predictor

The probabilistic residency length predictor is based on the
mass-count disparity phenomenon characteristic of the
skewed distribution of block popularity. As noted above,
selecting a memory reference at random by executing a
Bernoulli trial on each memory reference is likely to identify
a reference that belongs to a long residency. When this
happens, the rest of the residency is considered to be part of
the core working set.

The probability to use is the reciprocal of the desired
residency length threshold. When sampling references with
a low probability P ¼ 1

T , short residencies will have a very
low probability of being selected. But given that a single hit
is enough to induct a residency into the core, the probability
that a residency is classified as core after n references is
1� ð1� P Þn. This converges exponentially to 1 for large n.
In practice, the selection need not even be random, and we
have verified that periodic selection achieves results similar
to those obtained with random selection. For consistency,
though, only results for random selection are shown.

Importantly, implementing such a predictor does not
require saving any state information for the blocks, since
every selection is independent of its predecessors. The
hardware required to implement the selection mechanism
is trivial and constitutes of a pseudo random number
generator, which can be implemented using a simple linear-
feedback shift register, whereas periodic selection requires
only a saturating counter [34]. It can also share the random

source with others, such as Qureshi et al. prediction of
performance critical memory references [24] and Behar
et al. [2] sampling-based predictor that reduces the power
of trace caches by generating only selected traces.

4.3 Evaluating the Probabilistic Predictor

The evaluation of the probabilistic predictor is done against
the threshold-based gain-maximization idea of Section 4.1.
Since a sampling predictor with parameter P essentially
tries to approximate a threshold of 1

P , the evaluation focuses
on the effectiveness of this approximation.

Fig. 8 compares the probabilistic runtime predictor with
precise threshold-based selection for select benchmarks,
with residencies generated using a 16 KB direct-mapped
cache. The figure shows the percentage of residencies
classified as core (bottom lines) and the references they
service (top lines) in both data (top row) and instruction
(bottom row) streams. As a unified scale, the X-axis equates
a sampling probability of P with a threshold of 1

P . Focusing
on the percentage of data references serviced by the
predictor’s selection, for example, we see a very good
correlation to those serviced by the threshold-based
classification, at least for P � 0:01. Thus, for vortex using a
selection probability of P ¼ 0:01 in the sampling predictor
covers over 60 percent of all data references, constituting
over 90 percent of the number of references covered by
threshold-based classification.

Table 2 lists the fraction of residencies classified as core
by the probabilistic predictor on a 16 KB direct-mapped
cache, and the fraction of references they service, for both
data and instruction streams, with P ¼ 0:01 and P ¼ 0:001.
On average, sampling a mere 1 percent of the data references
selects �7:39 percent of the residencies, and covers over
45 percent of the references. As the average is highly affected
by benchmarks known for their poor temporal locality, like
swim, art, and mcf, the median values are also shown,
demonstrating a coverage of over 50 percent of the data
references. Sampling probabilities can be an order of
magnitude lower for instruction streams, as code density
emphasizes locality. Thus, sampling only 0.1 percent of the
references selects an average of 20 percent of the residencies,
covering some 77 percent of the references. Again, the
medians emphasize the skewed averages, with selection
reduced to 5.3 percent of the residencies but coverage
growing to 89 percent of the references.

Overall, these results imply that executing Bernoulli
trials with success probabilities of P ¼ 0:01 for data streams
and P ¼ 0:001 for instruction streams are good operating
points for all benchmarks analyzed. Similar results were
also achieved for 4-way set-associative data and instruction
caches [10]. The next section describes a dual-cache design
based on the probabilistic predictor proposed above, and
details a thorough exploration of specific probabilities
suitable for this design.

5 A RANDOM SAMPLING L1 CACHE DESIGN

This section introduces a novel dual L1 cache design that
uses reference sampling to distinguish long residencies
from short, transient ones. It then employs a direct-
mapped structure to serve blocks belonging to the core
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working set, and a fully associative structure acting as
filter to serve the transient residencies. It is shown that
such a design offers both better performance as well as
reduced power consumption compared to common cache
structures.

Fig. 9 depicts the proposed design. On each memory
access, the data are first searched in the direct-mapped

main cache. If this misses, the fully associative filter is
searched. If the filter misses as well, the request is sent to
the next level cache. In our experiments, we used 16 and
32K (common L1 sizes) for the direct-mapped cache, and a
2K fully associative filter. All structures use 64B lines.

Each memory reference that is serviced by either the
filter or the next level cache triggers a Bernoulli trial with a
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Fig. 8. Fraction of blocks selected by the probabilistic predictor, and the fraction of references they service, compared with actually classifying
residencies by their lengths.

TABLE 2
Percents of Residencies Classified as Core and the References They Service, for
P ¼ 0:001 and P ¼ 0:01 (16 KB Direct-Mapped Data and Instructions Caches)



predetermined success probability P , to decide whether it
should be promoted into the cache proper. Note that this

enables a block fetched from the next level cache to skip the
filter altogether and jump directly into the cache. This
decision is made by the memory reference sampling unit

(MRSU). In case the block is not selected, and was not
already present in the filter, the MRSU inserts it into the
filter, typically evicting the LRU line there in order to make
space. Section 5.1 explores the probabilistic design space for
a suitable Bernoulli success probability.

To reduce both time and power overheads associated

with accessing the fully associative filter, we have augmen-
ted the classic CAMþ SRAM design [34] with a wordline

look-aside buffer that caches recent lookups in the content
addressable memory (CAM). This is a small direct-mapped
structure mapping block tags directly to the filter’s SRAM-
based data store, so hits in the WLB avoid the majority of
the costly CAM lookups, while still maintaining fully
associative semantics. Section 5.2 offers a detailed descrip-
tion of the WLB and an analysis of its design space.

5.1 The Effects of Random Sampling

We use random sampling of memory references to partition
the reference stream into long residencies and short
transient residencies. The number of references to long
residencies is large, but they involve only a relatively small

number of distinct blocks. This reduces the number of
conflict misses, enabling the use of a low-latency, low-
energy, direct-mapped cache structure. On the other hand,
transient residencies naturally have a shorter cache lifetime,
but there are many of them. Therefore, they are better
served by a smaller, fully associative structure.

The sampling probability (and by implication the
filtering rate) is therefore a delicate tuning knob: aggressive
filtering might be counterproductive, since too many
blocks may end up being served by the filter and not
promoted to the cache proper, overwhelming the filter and
causing capacity misses. In contrast, permissive filtering
may promote too many blocks to the main cache, thus
increasing the number of conflict misses, and degrading
the performance.

This section is therefore dedicated to evaluating the effect
of the filtering probability on the partitioning of references.
The selected parameters are then used to evaluate perfor-
mance and power consumption in Section 5.3.

5.1.1 Impact on Miss Rate

First, we address the effects of filtering on the overall miss
rate (fraction of blocks missed by both the cache and the filter)
in order to determine the sampling probabilities that yield
best cache performance. Fig. 10 shows the distributions of
changes in the miss rate, when adding filtering to a 16 KB
direct-mapped cache (for example, -40 means that the miss
rate dropped by 40 percent). The data shown for each
probability are a summary of the observed changes in miss
rate over all benchmarks simulated. Good results should
combine a large overall reduction in miss rate with a dense
distribution, i.e., a small difference between the 25-75 percent
percentiles and min-max values, as a denser distribution
indicates more consistent results over all benchmarks.

The figure shows that the best average reduction in data
miss rate is �25 percent, achieved for P values of 0.05 to 0.1.
Moreover, this average improvement is not the result of a
single benchmark skewing the distribution, but rather the
entire distribution—as represented by the 25-75 percent
box—is moved downward. The same happens with the
instruction stream, where selection probabilities of 0.01 to
0.0001 all achieve an average improvement of �60 percent.

The fact that a similar improvement is achieved over a
range of probabilities, for both data and instruction, indicates
that using a static selection probability is a reasonable choice,
especially as it eliminates the need to add a dynamic tuning
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Fig. 9. Design of a random sampling filtered cache.

Fig. 10. Distributions of changes in miss rate when using various sampling probabilities, as applied to SPEC2000 benchmarks, for a 16K-DM cache.



mechanism. We therefore chose sampling probabilities of
0.05 and 0.0005 for the data and instruction streams,
respectively, of a 16 KB configuration. In a similar manner,
probabilities of 0.1 and 0.0005 were selected for the data and
instruction streams, respectively, of a 32 KB configuration.

Interestingly, the data and instruction streams require
widely different Bernoulli success probabilities. The reason
for this is that the instruction memory blocks are usually
accessed an order of magnitude more times compared to
data blocks. This difference is attributed to the fact that
instructions tend to be executed sequentially, so instruction
memory blocks are mostly read sequentially.

5.1.2 Impact on Reference Distribution

Filtering effectively splits the reference stream into two

components: one supposedly consisting of long residencies,

and another consisting of short transient ones. We now
evaluate this separation.

Fig. 11 shows vortex’s distributions of references (the
fraction of references serviced by residencies of up to a
certain length) observed in both parts of the filtered 16K
cache, compared with that of a regular 16K-DM cache.
Table 3 lists the results for all SPEC2000 benchmarks.
Residencies that are promoted from the filter to the cache
are split appropriately, with references before the promo-
tion counted as a filter residency and those after it as a
cache residency.

For the filtered cache, the difference between the resulting
distributions is quantified by two metrics: the median-
median ratio (horizontal double arrow in Fig. 11) and the
false-� equilibrium (vertical double arrow). The first metric
is the ratio between the median values of the cache and filter
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Fig. 11. The mass distributions of residencies for vortex in both the cache and the filter, compared with the original mass distribution. The horizontal
arrows show the median-to-median range, and the vertical double arrow shows the false-� equilibrium point.

TABLE 3
Median-Median Ratios and False-� Equilibrium Values for All Benchmarks Reviewed,Using

Sampling Probabilities P ¼ 0:05 and P ¼ 0:0005 for Data and Instruction Streams, Respectively



distributions (the median values are marked with down-
pointing arrows). This quantifies the distance between the
two distributions. Invariably, the results show that filter-
based residencies are much shorter than those of blocks
promoted to the cache proper, which in turn serve the
majority of the references. The ratios for data streams are
at 50-1,000, and average �320 (�50;000 for instruction
streams), suggesting random sampling is effective in
splitting the reference distribution.

The second metric, called the false-� equilibrium, quanti-
fies the fraction of false predictions. Any residency length
threshold will show up on the plot as a vertical line,
with the fraction of the cache’s distribution to its left
indicating the false positives (short residencies promoted to
the cache), and the fraction of the filter’s distribution to its
right indicating the false negatives (long residencies
remaining in the filter). The false-� equilibrium is the
unique threshold that equalizes the percentages of false
positives and false negatives.

For example, the false-� equilibrium point for vortex
stands at a residency length of �20 and generates
�6 percent false predictions. On the other hand, the data
stream of the cache unfriendly mcf experiences a false
prediction rate of �22 percent, which is among the highest
values observed. This is caused by the large number of
short residencies which swamp the filter leading to a dual
effect: they push blocks whose residencies can potentially
grow to be long out of the filter, and some are erroneously
selected by the random sampling due to their sheer
number. Nevertheless, the average false prediction rate is
as low as �12 percent for data streams (�2 percent for
instruction streams), indicating the effectiveness of the
proposed technique.

Finally, Fig. 12 compares the percentage of references
serviced by the cache proper with the percentage of
promoted blocks, for various probabilities. As expected,
for low probabilities, the fraction of serviced references is
much higher than the fraction of promoted blocks, because
only frequently accessed blocks are promoted. Higher
probabilities also promote shorter residencies, and at some
point, the promoted residencies are too short to affect
cache’s hit rate (indicated by the horizontal line). In our
case, this saturation occurs around P ¼ 0:2 for the data and
P ¼ 0:05 for the instructions. The probabilities suggested
above (P ¼ 0:05 for data and 0.0005 for instructions) insert

an average of only �33 percent of the data blocks into the
cache proper, servicing �77 percent of the data references
(�35 and �92 percent for the instruction streams).

In summary, random sampling indeed effectively splits
the distribution of references into two distinct components—
one representing frequently used blocks, the other transient
ones.

5.2 The Wordline Look-Aside Buffer

The filter in our dual-cache design is a fully associative
caching element. Such elements introduce long access
latencies and increased power consumption due to the fully
associative lookups. As shown in Fig. 13(left), the common
implementation uses content addressable memory for the
tag-store, with the wordlines connected to the wordlines of
an SRAM block serving as the data store [34]. But temporal
locality suggests the expensive fully associative lookups
may be frequently repeated for a specific block. We therefore
propose a wordline look-aside buffer to cache recent lookup
results. The resulting design is shown in Fig. 13(right).

The WLB consists of a direct-mapped structure, mapping
tags of filter-resident blocks to their location in the SRAM
data store. The data contained in the WLB for each tag is a
bitmap whose width is the number of lines in the
filter—32 lines for a 2K filter. This allows for each WLB
output bit to be directly connected to an SRAM wordline
without a decoder, offering fast, low-power caching of
CAM results. In fact, the WLB structure is efficient enough
to be accessed in parallel with the cache on every access,
totally eliminating the lookup latency on most filter
accesses. If the WLB misses, the CAM is accessed, and the
result is fed back to the WLB during the ensuing SRAM
access, hiding the WLB update latency.
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Fig. 12. Percent of references serviced by the cache versus the percent of blocks transferred from the filter into the cache for varying sampling
probabilities (averages over all benchmarks).

Fig. 13. Left: common fully associative buffer with a CAM tag store and
an SRAM data store. Right: using a WLB to cache mappings of recent
lookups.



The main design question is the size of the WLB. Fig. 14
shows the stack depth distributions of filter accesses for all
benchmarks, as well as the average distribution. The three
benchmarks that fall below the main cluster are swim, art,
and crafty. While the first two benchmarks are known for
their poor temporal locality, it seems the filtered design is
very effective at splitting crafty’s workload so the vast
majority of blocks in the filter exhibit very poor locality
(crafty’s miss rate is in fact reduced by �50 percent). Still, it
is clear that the vast majority of accesses pertain to recently
used blocks: on average, �94 percent of data accesses are to
stack depths of 8 or less, out of a total of 32 lines in the filter.

Because of its susceptibility to conflict misses, a WLB
consisting of N entries can only approximate a stack of depth
N . We have therefore explored WLB sizes of 8 and 16 entries.
In our experiments, we have found that using an 8-entry
WLB achieves an average of �78 percent hit rate for the data
stream (�83 percent median) and over 97 percent for the
instruction stream (�97 percent median) for a 2K filter.
Doubling the WLB size to 16 entries was found to improve
its performance by �5 percent, but substantially increases
its power consumption. We therefore use an 8-entry WLB in
our power and performance evaluation. Given that the hit
rate for the main cache stands at almost 80 percent for the
data stream and over 90 percent for the instruction stream
(Section 5.1.2), these results indicate that on average only
�4 percent of the data references and �0:1 percent of the
instruction references still initiate expensive fully associa-
tive lookups.

The WLB demonstrates that temporal locality can be
used to greatly reduce a CAM-based filter’s power con-
sumption and improve its performance, without losing the
fully associative property.

5.3 Impact on Power and Performance

The reduced miss rate achieved by the random sampling
design, combined with a low-latency, low-power, direct-
mapped cache, potentially offers both improved perfor-
mance and reduced power consumption. Augmenting the
fully associative filter with a WLB reduces the overhead
incurred by the filter, further improving efficiency. Using
the SimpleScalar toolset [1] for out-of-order simulations and
CACTI 4.1 [32] for power estimates, we have compared the
performance achieved by direct-mapped filtered caches
against various set-associative caches. The parameters of

the superscalar design used in the simulations are listed in
Table 4. CACTI was configured for a 70 nm manufacturing
process (the finest supported feature size). The SPEC2000
benchmark suite was used [30] with the ref input sets.
Benchmarks were fast forwarded 15 billion instructions to
skip any initialization code, and were then executed for two
billion instructions.

Fig. 15 shows a timing diagram of the different
components in the proposed cache design. The main cache
and WLB are searched in parallel in the first cycle. If the
main cache misses, the result of the WLB lookup determines
the filter lookup path: if the requested block is found in the
WLB, then no CAM lookup is necessary, enabling direct
access to the SRAM, and resulting in a 2-cycles total filter
latency; this is the normal case. Only if both the direct-
mapped main cache and the WLB miss, the filter’s CAM
looked is used (taking three additional cycles). The MRSU
does not add any latency as it can perform the random
sampling even before the data are fetched, enabling it to
perform any necessary eviction (either from the cache
proper or the filter) beforehand.

Fig. 16 shows the IPC improvement achieved by a
random sampling cache over a similar sized 4-way
associative cache. The figure shows consistent improve-
ments (up to �35 percent for a 16K configuration and
�28 percent for a 32K one), with an average IPC improve-
ment of just over 10 percent for both sizes. In no case did
the filtered design cause a degradation in performance.
While the results are consistent, it is clear that benchmarks
suffering from conflict misses enjoy better performance
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TABLE 4
Microarchitecture and Cache Configurations

Used in the Out-of-Order Simulations

Fig. 15. Timing diagram of the cache design, based on the �arch
parameters listed in Table 4. Down-pointing arrows indicate lookup hits,
while up-pointing arrows indicate misses.

Fig. 14. Distributions of filter access depth for all SPEC2000 bench-
marks, and the average distribution. The vast majority of accesses are
focused around the MRU position.



gains. This is most pronounced for apsi, where over
70 percent of the residencies consist of a single reference.
Indeed, doubling the cache size to 32K—thus increasing
the number of sets and reducing conflicts—decreases its
performance gains, while other benchmarks remain largely
unaffected.

Fig. 17 compares the average performance achieved by
16 and 32K random sampling caches to that of common
cache structures. It shows that a direct-mapped random
sampling filtered cache achieves significantly better perfor-
mance not only compared with similar size set-associative
caches, but also compared with larger, more expensive
caches: a 16K-DM random sampling cache yields
�5 percent higher IPC than a 32K 4-way cache, and a 32K
configuration outperforms a 64K 4-way by over 7 percent.
Likewise, using the extra 2K for a filter yields better
performance than using it as a victim buffer, indicating that
even a relatively large victim buffer may be swamped by
transient blocks.

Interestingly, the IPC improvement is similar when
comparing the 16K-DM random sampling cache to both a
regular 16K-DM cache and a 16K 4-way set-associative
cache, indicating similar performance achieved by the latter
two. The reason is that the direct-mapped cache’s low
access latency compensates for its higher miss rate. This is
even more evident when considering the larger 32 and
64K caches, where the doubling of the number of cache sets
reduces the number of conflicts, thus allowing the direct-
mapped cache’s lower latency to prevail.

Next, we evaluate the proposed design’s power con-
sumption. Using independent random sampling eliminates
the need to maintain any previous reuse information,
reducing the power consumption calculation to summing
the energies consumed by the direct-mapped cache, the
fully associative filter, and the small, direct-mapped WLB,
each weighted by the number of accesses it serves.

Fig. 18 shows both dynamic read energy and leakage
power consumed by the random sampling cache, compared
to common cache configurations (same as those in Fig. 17).
Obviously, the power consumed by the random sampling
cache is higher than that of a simple direct-mapped cache,
because of the filter: up to�30 percent more dynamic energy
and �15 percent excess leakage power for a 16K random
sampling cache, and just over half that for a 32K cache.
However, when comparing a random sampling cache to a
more common 4-way associative cache of a similar size, the
16K random sampling cache consumes 70-80 percent less
dynamic energy, with only �5 percent more leakage power.
The 32K configuration yields 60-70 percent reduction in
dynamic energy, with no increase in leakage.

An even bigger advantage of random sampling caches is
apparent when compared to a set-associative cache double
its size: both the 16 and 32K random sampling caches
consume 70-80 percent less dynamic energy, and 40-
50 percent less leakage, than 32 and 64K 4-way set-
associative caches, respectively, while still offering better
performance, as shown in Fig. 17. This suggests that adding
just a small buffer and a trivial insertion policy is more
efficient than blindly doubling cache size.

6 RELATED WORK

Several studies have considered the notion of separating

memory reference streams into core and transient groups,

and designing mechanisms that serve each class using a

different caching policy.
Megiddo and Modha [21] designed the ARC policy for

operating systems’ buffer caches. New blocks are managed
using an LRU list, and moved to an LFU list on the second
access. ARC thus favors frequently accessed blocks, yet still
dedicates at least half the cache memory to transient data.

In L2 caches, Qureshi et al. [24] describe the LIN
replacement policy that takes the cost of a cache miss into
account, prioritizing isolated memory accesses that stall the
processor. Interestingly, this policy serves some benchmark
very well and some very poorly. They therefore propose
SBAR, a set dueling policy which maintains dual LRU/LIN
tag stores for a subset of the cache sets, and uses their
performance to determine the overall replacement policy.
Adaptively chosing among dueling L2 replacement policies
was also suggested by Subramanian et al. [31].
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Fig. 16. IPC improvement for direct-mapped random sampling caches
(using a 2K filter) over similar sized 4-way caches.

Fig. 17. Average IPC improvement for 16 and 32K direct-mapped filtered
caches over common cache configurations.

Fig. 18. Relative power consumption of the random sampling cache,
compared to common cache designs (lower is better), for a 70 nm
process.



In a later study, Qureshi et al. [23] observe that most
L2 blocks are never reused, and propose a bimodal
insertion policy (BIP) that occasionally inserts blocks to
the MRU position rather than to the LRU position. They
then again use set dueling to dynamically select the best
performing policy.

Rajan and Ramaswamy [25] attempted to approximate
optimal replacement by tracking the reference distance of
cached blocks. Each L2 cache set is partitioned into a Main
Cache and a Shepherd Cache (SC) that uses FIFO replace-
ment. New blocks are inserted into the SC where the
interblock access distances are tracked. On block evictions,
the cache selects the block that is expected to be accessed
furthest away from the oldest SC block. A somewhat similar
approach was taken by Jaleel et al. [14] in the Re-Reference
Interval Predictions (RRIP) eviction policy, which evicts
the cache block that will likely be used in the most
distant future.

Cho et al. [6] observed that a large portion of memory
references target local variables stored on the stack (as was
also observed much earlier by Ditzel and McLellan [9]).
They then propose a compiler-assisted mechanism that
splits the memory stream into local and global accesses,
allowing the pipeline to serve local variables from a small
local variable cache (LVC).

Lee et al. [18] also target stack references. They show that
stack references account for 56 percent of all memory
reference in SPECint2000 benchmarks, and that the vast
majority of stack references are to offsets smaller than 8 KB
of the top of stack. They therefore propose to use a
dedicated stack value file (SVF), which caches all stack
references and thereby reduces memory access latencies,
cache accesses, and memory traffic.

In summary, most of the studies described above target
non-L1 caches and involve mechanisms that are too
complex to be efficiently implemented in L1 caches
(Shepherd Cache [25], RRIP [14], set dueling [24], [31]) or
rely on the fact that the L2 only views a subset of the
memory stream that is filtered by the L1 cache (ARC [21]
and LIP/BIP [23]). The few studies that do target L1 cache
performance specifically address stack references. In con-
trast, we present a generic mechanism based on a thorough
analysis of L1 memory references, characterization of the
mass-count disparity in L1 reference streams, and the
definition of the core working sets concept, where a small
subset of memory blocks dominate the reference stream.

7 CONCLUSIONS

The growing size and power consumption of processor
caches, and the replication of caches in multicore designs,
motivate renewed efforts to improve cache characteristics.
One way to do so is by taking cues from workload patterns.
In this vein, the main contributions of this paper are the
characterization of the mass-count disparity phenomenon
prevalent in L1 cache workloads, and the design of a
random sampling filtered cache that employs this statistical
phenomenon to filter L1 reference streams. In addition, we
introduce the Wordline Look-aside Buffer to eliminate the
vast majority of expensive fully associative lookups, leading
to a win-win design with both improved overall perfor-
mance and reduced power consumption.

The skewed distribution of memory references is well

known. Our contribution is in the quantification of this

effect using metrics for mass-count disparity. This quanti-

fication reveals that random sampling of references can be

used to effectively identify the core of an application’s

working set. This mechanism is crucial for our design, as it

avoids the need for maintaining historical information that

has plagued previous dual-cache designs.
Our dual-cache design employs a fast, low-power direct-

mapped component for the heavily accessed core, and a

smaller fully associative filter for the more transient data.

Specifically, we suggest augmenting a 16 KB cache with a

2 KB filter. The sampling probability used to promote a

cache line from the filter to the cache is P ¼ 0:05 for the data

stream and P ¼ 0:0005 for instructions. In implementing the

filter, a WLB with only eight entries was sufficient to avoid

�80 percent of the lookups in the costly CAM. This design

yields up to �35 percent improvement in IPC, with an

average of �10 percent over all benchmarks—better than a

double-sized, 4-way set-associative conventional cache.

Moreover, it dramatically reduces the overall power

consumption: dynamic power consumption is reduced by

�70-80 percent relative to the double-sized cache, and

leakage by over 40 percent.
While the various components need to be balanced

correctly to achieve good performance, our analysis

indicates that the design is not overly sensitive to the

design parameters. However, additional research is needed

in order to fully capitalize on these ideas. In particular,

effectively integrating caches with variable response times

into the instruction pipeline is an interesting challenge.
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