Core Working Sets: Concept, Identification, and Use

Yoav Etsion Dror G. Feitelson
School of Computer Science and Engineering
The Hebrew University of Jerusalem
91904 Jerusalem, Israel

Abstract

Locality is often expressed using working sets, defined byridey to be the set of distinct
addresses referenced within a certain window of time. Téfsidion puts all memory blocks
in a working set on an equal footing. But in fact a dramatiéedénce exists between the usage
patterns of frequently used data and those of lightly ustal d&e therefore propose to extend
Denning’s definition with that ofore working sets, employing predicates to identify the most
important subset of blocks in a working set — typically thestnfsequently accessed ones.
Identifying the heavily used core is important for cachiogemes, as servicing it efficiently
yields the biggest benefit. Core working sets thus serve asderlying unifying concept for
all mechanisms that preferentially treat frequently asedsblocks, and specifically address
recent dual cache structures, in which the cache is compaisedo elements: one for the
core, and the other for more transient data.

1 Introduction

The notion of a memory hierarchy is one of the oldest and mbsfuitous in computer design,
dating back to the work of von Neumann and his associateseirl@40’s. The idea is that a
small and fast memory will cache the most useful items at argngime, with a larger but slower
memory serving as a backing store. While processor caclesat the speed gap between the
CPU and memory, this gap nevertheless continues to growhédsame time increasing on-chip
parallelism threatens to stress caches more than eveebd&foese developments motivate attempts
for better utilization of cache resources, through thegtesif more efficient caching structures.
This design process relies on extensive analysis of memorkleads, and the development of
new analysis tools enabling a deeper understanding of daathevior.

The essence of caching is to identify and store those dates iteat will be most useful in the
immediate future [1]. To predict future use of data cachgsae the principle of locality, which
states that at any given time only a small fraction of the wlaaldress space is used, and that this
used part changes relatively slowly [4]. Denning formaldiieis using the notion of working set,
defined to be those items that were accessed within a cedaiber of instructions. The goal of
caching is thus effectively to keep the working set in theneac

1

Locality is usually regarded as a combination of two didtipperties — locality in time
and locality in space — but is also a manifestation of the skkdistribution of theopularity of
different memory blocks, where some blocks are accessed freuently than others. In fact,
as we show below, it may be possible to partition the workieisto two sub-sets: those data
items that are very popular and accessed at a very high nateth@se that are only accessed
intermittently. This distinction is antithetical to Demg's definition which puts all items in a
working set on an equal footing, and lies at the heart of ofiniien of the core of the working
set.

The notion of a core leads to the realization that not all elets of the working set are equally
important. The elements in the working set are not accessedhomogeneous manner. Thus
treating all the elements of the working set equally may keeslib-optimal performance. Rather,
it may be beneficial to try to identify the more important cetements, and give them preferential
treatment.

One way to give preferential treatment to the more importata elements is to usedaal
cache structure. Such structures partition the cachewudgarts, and use them for data elements
that exhibit different behaviotsIn many cases, data elements can also move from one pa# to th
other. For example, data may first be stored in a short-tefferband only data that is identified
as important will be promoted into the long-term cache. Tdentification of a certain item as
important can be done based on the references it receivdd intthe short-term buffer: if it is
referenced again and again, it is identified as part of the and promoted.

In this paper, we introduce a formal framework that extendaring’s definition of a work-
ing set, enabling designers to explicitly express theicggtion of which blocks in the working
set are considered important. This framework uses logiealipates to distinguish between the
important subset — the core — and the remaining blocks. Amgika of a predicate that can be
used to identify the core is “the block is accessed at leasimi€s when brought into the cache”.
The extraction of an explicit predicate enables qualieatemparison between different caching
mechanisms and implementations. In particular, it deasifilenotion of the working set’s core
from the actuataching mechanismused to implement it.

While the core working set framework is aimed for use with eaghing mechanism, we focus
our exploration on the synergy between the skewed distobuif memory references and dual
cache structures. Defining the core based on the intensityeaiory references naturally leads to
a dual design, where one part of the cache is used for the etaewhile the more transient data
is served by another part. In effect this filters non-cor@a@aid prevents them from polluting the
cache structure used for core data.

We start by motivating this distinction and showing that pmaanchmarks indeed have a rela-
tively well-defined core (Section 2). We then suggest usieglicates as a framework for defining
the core (Section 3). Finally, we show that various previprgposals for dual cache structures
can be interpreted as attempts to implement improved stpmocaching the core working set
(Section 4).

e differentiate this from aplit cache structure, where one part is used for data and thefothestructions, but
some authors use the terms interchangeably.

168.wupwise DL1 177.mesa DL1

09 4 .07
0.8
2 0.7 - >
S 04+ E
S 034 references s
0.2 . .
0.1 : A
04 'W1/2:§.26 ‘ ‘ ‘ 0 *W‘1/2:2‘.05 ‘ ‘ ‘ ‘
1 10 100 1000 10*% 1P 1 10 100 1000 10* 1@ 1P
references references
168.wupwise IL1 177.mesa IL1
1 1 - —~ =
05] 05] 4 "N1/2=0.02
0.8 0.8 joint
207+ 207+ ratio
S 0.6 5 0.6 1 14/88
8 0.5 _g 05 4
o 0.4 o 0.4
S 0.3 8 0.3
0.2 1 ; 024 [
O.é : \HN]\'IZ_Q'BG\ T T T] O.é : \le\/2:4\'65 T T T T |
1 10 1001000 10* 10° 10° 107 108 1 10 1001000 10* 10° 1P 107 108
references references

Figure 1: Mass-count disparity plots for memory accesses in selegtCIfenchmarks, using the
ref input.

2 The Skewed Popularity of Memory Addresses

Locality of reference is one of the best-known phenomenawfputer workloads. This is usually
divided into two types: spatial locality, in which we see egses to addresses that aear an
address that was just referenced, and temporal localityhich we seeepeated references to

the same address. Temporal locality is actually the resulwo distinct phenomena. One is the
skewed popularity of different addresses, where some éecreeced a lot of times, while others
are only referenced a few times. The other is correlationmmet accesses to the same address
are bunched together in a burst of activity, rather thanddiatributed uniformly throughout the
execution. While the intuition of what “temporal localityieans tends to the second of these, the
first is actually the more important effect.

The skewed popularity of memory blocks is well-known, but Baldom been quantified. Such
guantification is possible using mass-count disparitygplas described in the side-bar and demon-
strated in Fig. 1. In the following we consistently define nogynobjects to be 64 bytes long,
because this is the most common size for a cache line. Pagutameasured by the number of
references to such a memory object in eaathe residency, i.e. from the time it is inserted into
the cache until itis evicted. Thus if an object is referent@d times while in the cache, is evicted,
and then is inserted again and referenced another 200 tines counted as two residencies with

3

Sidebar: Mass-Count Disparity Plots

Mass-count disparity plots are used to visualize highlysd distribution$. These plots
actually superimpose two distributions. The first, which eedl the count distribution, is a
distribution on cache residencies (or blocks), and specif@av many references each re
dency received. Thuk, (x) will represent the probability that a cache residency isneziced
x times or less. The second, called tiass distribution, is a distribution on references;
specifies the popularity of the residency to which the refeeepertains. Thus, (z) will

represent the probability that a referenceast of a residency that receivasreferences or

less.

Mass-count disparity refers to situations where the twtribigtions are quite distinct. Exan
ples for two applications in the SPEC 2000 benchmark suéskown in Fig. 1 (results wer
obtained using the SimpleScalar toolset). The simplestioetr quantifying the disparity
is thejoint ratio, which is the unique point in the graphs where the sum of tlee@®Fs is

unity (if the CDFs have a discrete mode, as sometimes hapgfensum may be different).

For example, in the case of the mesa benchmark data streanuith ratio is 10/90. This
means that 90% of the memargferences are directed at only 10% of theche residencies,
whereas the remaining 90% of the residencies get only 10%eofdferences — a precis
example of the proverbial 10/90 principle. Thus a typicaldency is only referenced a rath
small number of times (up to 10 or 20 in this case), whereagpiadlreference is directed ¢
a long residency (one that is referenced thousands of times)

Two other metrics that are especially important in the candédual cache designs arg, ,
andN,,,. TheW;,, metric assesses the combined weight of the half of the nesiele that
receive the fewest references. For mesa, these 50% of idemeges together get only 2.05
of the references. Th&, , metric characterizes the other end of the distributionivég the
fraction of heavy-weight residencies needed to accounh#dfrof the total references. F¢
mesa, just 0.2% of the residencies are enough.

Reference
@ D. G. Feitelson. Metrics for mass-count disparity. NModeling, Anal. & Smulation of

Si-

t

€

at

)

Dr

Comput. & Telecomm. Systems, pages 61-68, Sep 2006.

popularities of 100 and 200 references respectively. Théacterization obviously depend
the cache design; the results shown here are for a 16 KB dairegped cache.

s on

As noted in the sidebar, skewed popularity as measured by-omast disparity (and in partic-
ular, by the joint ratio) is a generalization of the well-kvio10/90 principle: 10% of the objects

receive 90% of the activity, and vice versa. In the SPEC 2@0®bmarks, when the graphs were
nthe
range 10/90 to 33/67 for the data stream, and 1/99 to 24/ a&éanstruction stream. In cases that
n the

well-formed (that is, not dominated by a large discrete)stiep actual values observed were i

are dominated by uniform access (that is, a very large traaif the blocks are all accessed i
same way) there was naturally little if any mass-count digpa

A highly-skewed joint ratio implies a partitioning of thesidencies into two distinct groups:
very many residencies that together receive only a smaitifna of the references, and a small

4

group of residencies that together account for the vastnihajf references — what we call the
core working set. Many dual cache structures attempt to capture this divisibhe motivation

is straightforward. The lightly used residencies do notdbéwery much from the caching, and
should not be allowed to pollute the cache. Rather, the cagiin@uld be used preferentially to store
heavily used data items, such as the minuscule number dibtbat together account for half of
all references. The dual structure helps in identifying baddling the two types correctly.

While the skewed distribution of popularity is a major cdmitor to temporal locality, one
should nevertheless acknowledge the fact that referercelssglay a bursty behavior. To study
this, we looked at how many different blocks are referencetivbeen successive references to a
given block. The results indicate that the majority of inteierence distances are indeed short. We
can then define bursts to be sequences of references to atbédcke separated by references to
less than say 256 other blocks. Using this we can study theddison of burst lengths, and find
them to be generally short, ranging up to about 32 referefocesost benchmarks. However, they
are long enough to prohibit the use of a low threshold to ifiebtocks that belongs to the core
working set with confidence. The core members, in turn, ekbitiremely long bursts; these are
actually blocks that are used continuously, and therefonead have long gaps between successive
accesses, so all their accesses will seem to be one long burst

3 Definition of Core Working Sets

Denning’s definition of working sets [3] is based on the pipie of locality, which he defined
to include three components [4]: a nonuniform popularitydifferent addresses, a slow change
in the reference frequency to any given page, and a cowaléigtween the immediate past the
near future. Our data strongly supports the first comportéat, of non-uniform access. But
it casts a doubt on the other two, by demonstrating the coetiraccess to the same high-use
memory objects, while much of the low-use data is only a@m$sr very short and intermittent
time windows. In addition, transitions between phases efcthmputation may be expected to be
sharp rather than gradual, and moreover, they will probaklyorrelated for multiple memory
objects. This motivates a new definition that focuses on #rsigtent high-usage data in each
phase, namely the core working set.

The definition of a working set by Denning is the setatifdistinct blocks that were accessed
within a window of 7" instructions [3]. We will denote this set d3;(¢), to mean “the Denning
working set at time using a window size of . Our findings imply that this definition is deficient
in the sense that it does not distinguish between the heasdy items and the lightly used ones.

As an alternative, we define tleere working set to be those blocks that appear in the working
set and are reused a significant number of times. This willdmtedCr p(¢), where the extra
parameterP reflects a predictor used to identify core members; the pradwill be expressed
as a predicate that evaluates to “true” for core members,‘fatgk” for other blocks. This is a
generalization of the Denning working set, which can sinf@yexpressed as the core working set
with a predicate that is always true:

Dr(t) = CT,true(t)

The predicate” is meant to capture reuse of memory. In the context of vintoainory, tem-
poral locality has been used to justify page replacemerdritfgms such as LRU or the clock
algorithm. In particular, Belady emphasized the imporéaatuse bits to identify recently used
data that should be retained [1]. Our reuse predictors caedée as an extension of this practice.
The generality of core working sets can also be demonstbgtéd applicability to block prefetch-
ers: at any time, a prefetcher would estimate the core at a future ttmen. Therefore, the
prefetcher’s core can be described’asy (¢t +n), whereP represents the predicate best describing
the prefetcher designer’s perception of the importantestutisblocks.

The simplest reuse predictor is based on counting the nuoflyeferences to a given block.
Let B represent a block of words. Letw;, i = 1,...,k be the words in block3. Letr(w) be
the number of references to wordwithin the window of interest. Using this, we can define the
predicatenB that evaluates to true if block B was refereneetimes or more:

k
nB=> r(w)>n
i=1

For example, the predicate 3B identifies those blocks thae weferenced a total of 3 times or
more.

The nB predicates are meant to identify a combination of spatia/@ temporal locality,
without requiring either type explicitly. Alternativelyye can write a temporal-locality predicate
that requires that some specific wardn block B was referenced times or more:

nW=3weB st r(w)>n

We can also write a predicate that requires a certain nunflobstinct words to be referenced, to
express spatial locality.

Given this rich set of possible predicates, the questiorow to select one that captures the
notion of a core working set. Based on the discussion onyakstess patterns above, it seems
advisable to require a significant number of references.altiqular, we have found 16B to be a
promising predicate.

The effect of the above definitions is illustrated in Fig. &ing) the SPEC gcc benchmark as an
example, the top graph simply shows the access pattern ttathe Below it we show the Denning
working setD;0(t) (i.e. for a window of 1000 instructions) and the core worksedC' 0,165 ()-

As we can easily see, the core working set is indeed much emslpically being just 10—-20%
of the Denning working set. Importantly, it eliminates alltbe sharp peaks that appear in the
Denning working set. Nevertheless, as shown in the bott@phgrit routinely captures about 60%
of the memory references.

4 Cache Bypass and Dual Cache Structures

We have established that memory blocks can be roughly diviak® two groups: theore
working set, which includes a relatively small number ofdie that are accessed a lot, and the

Memory acceses: gcc data

5.378e+09
5.3775e+09
5.377e+09
5.3765e+09
5.376e+09
5.3755e+09
5.375e+09
5.3745e+09
5.374e+09
5.3735e+09
5.373e+09
5.3725e+09
5.372e+09
5.3715e+09

Address

5.3685e+0!
4.8325e+09
4.832e+0%zz
4.8315e+0%*
4.831e+09
4.8305e+09

Address

Working set: gcc data
400 Bo——
350 Denning | e |
300 1168 core | ||

1 4 bods bt |

Working set size
N
o
(=]

Working set: Core / Denning

o o Wi A
2 sobmha— | [Moo LA
5 40 Vo LT [
: = STOu VNS W S W 79
"o % % %, %, %,
% 2 % %

9o .
Instruction number
16B count%

[16B mass%

Figure 2:Examples of memory access patterns and the resulting Dganihcore working sets.

rest, which are accessed only a few times in a bursty manherqgtiestion then is how this can be
put to use to improve caching.

The principle behind optimal cache replacement is very Bmphen space is needed, replace
the item that will not be used for the most time in the futurer(ever) [1]. In particular, it should
be noticed that it is certainly possible that the optimabatiym will decide to replace thiast item
that was brought into the cache, if all other items will beesmsed before this item is accessed
again. This would indicate that this item was only inserted the cache as part of the mechanism
of performing the access; it was not inserted into the cacloeder to retain it for future reuse.

By analyzing the reference streams of SPEC benchmarks wssilgle to see that this sort
of behavior does indeed occur in practice. For example, weddhat if the references of the
gcc benchmark were to be handled by a 16 KB fully-associatahe, 30% of insertions would

Sidebar: Formalizing the Benefits of Cache Bypass

Why is cache bypass a good idea? Here we formalize its beunsfitg a simple, specific examp
cache configuration. Assume a cache with-n cache lines, organized into eitheor n+1 equal

sets. In either case, the address space is partitioned ieqoial-size disjoint partitions (assuming

n is a power of 2) using the memory address bits. The two org#inizs are used as follows.

le

Set associative: there aren sets ofn + 1 cache lines each, and each serves a distinct partition of

the address space. This is the commonly used approach.

Bypass. there aren sets ofn cache lines each, and each serves a distinct partition afdteess
space, as in the conventional approach. ke 1st set (which we will call the “extra” set
can accept any address and serves as a bypass.

These two designs expose a tradeoff: in the set associasigrd each set is larger by one,

ducing the danger of conflict misses. In the bypass desigmexira set is not tied to any specitic

address, increasing flexibility.

re-

Considering these two options, it is relatively easy to batthe bypass design has the advantage.

Formally this is shown by two claims.

Claim 1 The bypass design can simulate the set associative design.

Proof: While each cache line in the extra set can hold any addresstire address space, we are

not required to use this functionality. Instead, we cantligaich cache line to one of the partitio
in the address space. Thus the effective space availabtadbing each partition becomest 1,
just like in the set associative design. [

ns

The conclusion from this claim is that the bypass design megdr suffer more cache misses than

the set associative design. At the same time, we have trevioly claim that establishes that
actually has an advantage.

Claim 2 There exist access patterns that suffer arbitrarily more cache misses when served by the
set associative design than when served by the bypass design.

Proof: An access pattern that provides such an example is the fodjpwepeatedly acces3

addresses from any single address space partition in & cgalner times. When using the set

t

associative design, only a single set witltache lines will be used. At best, an arbitrary subset

of n — 1 addresses will be cached, and the other 1 will share the remaining cell, leading to

total of O(nm) misses. When using the bypass design, on the other har2a, atidresses will be

cached by using the original set and the extra set. Therefdyethe initial2n compulsory misse
will occur. In this sense, a bypass mechanism can potgntedieve pressure on specific cache g
resulting from bursty conflict misses. By extending the térgf this pattern (i.e. by increasing)
any arbitrary ratio can be achieved. [

More generally, the number of sets and the set sizes neecbélsame. The size of the extra
need also not be the same as that of all the other sets.

a

n
5

ets

belong to this class; in other benchmarks, we saw resultgnigrirom 13% to a whopping 86%.
Returning to gcc, if the cache is 4-way set associative taegohent of new items is much more
restricted, and a full 60% of insertions would be immediateinoved by the optimal algorithm.
These results imply that the conventional wisdom favorimg itRU replacement algorithm is of
guestionable merit.

It is especially easy to visualize why LRU may fail by considg transient streaming data.
When faced with such data, the optimal algorithm would datéi@ single cache line for all of it,
and let the data stream flow through this cache line. All otiaehe lines would not be disturbed.
Effectively, the optimal algorithm thus partitions the bacinto the main cache (for core non-
streaming data) and a cache bypass for the streaming compoo@-core). The LRU algorithm,
by contradistinction, would do the opposite and lose alldhehe contents.

A generalization of this observation is to partition thetwaexplicitly into two parts: the main
cache and a bypass area. The main cache is used to stored&rdature reuse. The bypass is
used to provide access to transient data that will not be mseth if at all in the future. By keeping
such data out of the main cache, we reduce cache conflictauasdguent misses.

Many similar schemes have been proposed in the literatu8f [Eor example, Rivers and
Davidson propose to tag cache lines with a temporal lochiity11]. Initially, lines are stored
in a small non-temporal buffer (in our terminology, this ietbypass area). If they are reused,
the temporal bit is set indicating that, in our terminolotpgse lines should be considered as core
elements. Later, when a line with the temporal bit set ishfetcfrom memory, it is inserted into
the larger temporal cache. Park et al. also use a spatiarhtoffobserve usage [10]. However,
they do so at different granularities: when a word is refeeeh only a small sub-line including
this word is promoted to the temporal cache. A more extrenpecgeh is the bypass mechanism
of Johnson et al. [6]. This is based on a memory address t&lA&)(which counts accesses to
different areas of memory. Then, if a low-count access thresato displace a cached high-count
datum, it is simply loaded directly to the register file anghdgses the cache altogether. Another
scheme is the Assist cache used in the HP PA 7200 CPU [2], viifiers out streaming (spatial
locality) data based on compiler hints.

The above schemes have the drawback of requiring histanifcamation to be maintained for
each cache lines. An alternative proposal is to use filtefiog example, Walsh and Board propose
a dual design with a direct-mapped main cache and a smalldsfiociative filter [14]. Referenced
data is first placed in the filter, and only if it is referencegia it is promoted to the main cache.
This avoids polluting the cache with data that is only rafeesl once. Better filtering may be
achieved by using randomized sampling, based on the skeamdapity distributions described
above [5]. The idea is that every reference to data in the fdteampled with a low probability,
and only memory blocks that come up in the sampling are predhtd the main cache. Due
to the mass-count disparity phenomenon, this effectivadpiifies those memory blocks that are
accessed a very large number of times — but without requivistprical data to be maintained.

A somewhat different approach is provided by Jouppi’s matache, which is a small auxiliary
cache used to store cache lines that were evicted from the caghe [7]. This helps reduce
the adverse effects of conflict misses, because the victiferbig fully associative and therefore
effectively increases the size of the most heavily usedeaels. In this case the added structure is

not used to filter out transient data, but rather to recove data that was accidentally displaced
by transient data. By virtue of being applied after lines ereted, this too avoids the need to
maintain historical data.

A minimalistic, bypass-only approach, is McFarling’s dyma exclusion cache [9]. Here cache
lines are augmented with just two state bits, the last-liibd the sticky bit. In particular, the
sticky bit is used to retain a desirable cache line rather #vécting it upon a conflict; the conflict-
ing line is served directly to the processor without beingheal. However, this approach is limited
to instruction streams and specifically to cases where &jlgionly two instructions conflict with
each other.

Interestingly, dual structures are not used only to impedormance. Sahuquillo et al. [12]
proposed a filter cache, in which a relatively small buffeused for the most highly accessed
elements, in order to reduce bus traffic in multiprocessetesys. A similar design by Kin at al.
[8] was proposed in order to reduce energy consumption,lbwig the main cache to remain in
power save mode most of the time. Some of the dual structessided above also reduce power
consumption, by virtue of using a direct-mapped design #ot pf the cache [10, 5]. Thus they
can lead to a win-win situation, where both performance awlgp characteristics are improved,
instead of having to trade them off against each other.

5 Conclusions

Processor caches have been an area of active researchddededevertheless, additional work
is still important due to the continuing gap between prooesand memory. In fact, the problem is
expected to intensify with the advent of multicore processdue to the replication of L1 caches
for each core and the increased pressure on shared L2 caches.

One way to continue and improve is by taking cues from wortdlpatterns. We have shown
that memory references display mass-count disparity, avitblatively small fraction of memory
blocks receiving a relatively large fraction of the refezes. But this skewed distribution is at
odds with the classic homogeneous definition of working, gt puts all memory blocks in
the working set on an equal footing. We therefore proposedne working set framework as an
extension and refinement of Denning’s working set. This frframework uses logical predicates
to distinguish between the more important subset of the aadathe rest. Such a distinction, in
turn, motivates dual cache structures that handle core andtore data differently. By matching
the handling to the access pattern, one can even achievewiwsituation, which provides both
performance improvements and power reduction.

References

[1] L. A. Belady. A study of replacement algorithms for a viat-storage computeiBM Syst. J.,
5(2):78-101, 1966.

[2] K. K. Chan, C. C. Hay, J. R. Keller, G. P. Kurpanek, F. X. 8atacher, , and J. Zheng. Design
of the HP PA 7200 CPUHewlett-Packard Journal, 47(1), Feb 1996.

10

[3] P.J.Denning. The working set model for program behawwommun. ACM, 11(5):323-333,
May 1968.

[4] P. J. Denning and S. C. Schwartz. Properties of the wgrkiet model. Commun. ACM,
15(3):191-198, Mar 1972.

[5] V. Etsion and D. G. Feitelson. L1 cache filtering througindom selection of memory ref-
erences. Idntl. Conf. on Parallel Arch. and Compilation Techniques, pages 235-244, Sep
2007.

[6] T.L.Johnson, D. A. Connors, M. C. Merten, and W. mei W. HRwin-time cache bypassing.
|[EEE Trans. on Computers, 48(12):1338-1354, 1999.

[7] N. P. Jouppi. Improving direct-mapped cache perfornedng the addition of a small fully-
associative cache and prefetch buffersinth. Symp. on Computer Architecture, pages 364—
373, 1990.

[8] J.Kin, M. Gupta, and W. H. Mangione-Smith. Filtering memreferences to increase energy
efficiency. |EEE Trans. on Computers, 49(1):1-15, Jan 2000.

[9] S. McFarling. Cache replacement with dynamic exclusidn Intl. Symp. on Computer
Architecture, pages 191-200, New York, NY, USA, 1992. ACM Press.

[10] G.-H. Park, K.-W. Lee, J.-H. Lee, T.-D. Han, and S.-DnKiA power efficient cache struc-
ture for embedded processors based on the dual cache strudtubrkshop Languages,
Compilers, and Tools for Embedded Systems, pages 162—177. Springer Verlag, 2000.

[11] J. A. Rivers and E. S. Davidson. Reducing conflicts inedismapped caches with a
temporality-based design. Intl. Conf. on Parallel Processing, volume 1, pages 154-163,
1996.

[12] J. Sahuquillo, S. Petit, A. Pont, and V. Milutinovicxjoring the performance of split data
cache schemes on superscalar processors and symmetiraogissorsJournal of Systems
Architecture, 51(8):451-469, Aug 2005.

[13] J. Sahuquillo and A. Pont. Splitting the data cache: Avey |EEE Concurrency, 8(3):30-35,
Jul-Sep 2000.

[14] S. J. Walsh and J. A. Board. Pollution control caching. ICCD '95: Proc. Intl. Conf.
Computer Design, pages 300-306, Washington, DC, USA, 1995. IEEE Computee§o

11

