
Core Working Sets: Concept, Identification, and Use

Yoav Etsion Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract

Locality is often expressed using working sets, defined by Denning to be the set of distinct
addresses referenced within a certain window of time. This definition puts all memory blocks
in a working set on an equal footing. But in fact a dramatic difference exists between the usage
patterns of frequently used data and those of lightly used data. We therefore propose to extend
Denning’s definition with that ofcore working sets, employing predicates to identify the most
important subset of blocks in a working set — typically the most frequently accessed ones.
Identifying the heavily used core is important for caching schemes, as servicing it efficiently
yields the biggest benefit. Core working sets thus serve as anunderlying unifying concept for
all mechanisms that preferentially treat frequently accessed blocks, and specifically address
recent dual cache structures, in which the cache is composedof two elements: one for the
core, and the other for more transient data.

1 Introduction

The notion of a memory hierarchy is one of the oldest and most ubiquitous in computer design,
dating back to the work of von Neumann and his associates in the 1940’s. The idea is that a
small and fast memory will cache the most useful items at any given time, with a larger but slower
memory serving as a backing store. While processor caches alleviate the speed gap between the
CPU and memory, this gap nevertheless continues to grow. At the same time increasing on-chip
parallelism threatens to stress caches more than ever before. These developments motivate attempts
for better utilization of cache resources, through the design of more efficient caching structures.
This design process relies on extensive analysis of memory workloads, and the development of
new analysis tools enabling a deeper understanding of cachebehavior.

The essence of caching is to identify and store those data items that will be most useful in the
immediate future [1]. To predict future use of data caches rely on the principle of locality, which
states that at any given time only a small fraction of the whole address space is used, and that this
used part changes relatively slowly [4]. Denning formalized this using the notion of aworking set,
defined to be those items that were accessed within a certain number of instructions. The goal of
caching is thus effectively to keep the working set in the cache.

1

Locality is usually regarded as a combination of two distinct properties — locality in time
and locality in space — but is also a manifestation of the skewed distribution of thepopularity of
different memory blocks, where some blocks are accessed more frequently than others. In fact,
as we show below, it may be possible to partition the working set into two sub-sets: those data
items that are very popular and accessed at a very high rate, and those that are only accessed
intermittently. This distinction is antithetical to Denning’s definition which puts all items in a
working set on an equal footing, and lies at the heart of our definition of thecore of the working
set.

The notion of a core leads to the realization that not all elements of the working set are equally
important. The elements in the working set are not accessed in a homogeneous manner. Thus
treating all the elements of the working set equally may leadto sub-optimal performance. Rather,
it may be beneficial to try to identify the more important coreelements, and give them preferential
treatment.

One way to give preferential treatment to the more importantdata elements is to use adual
cache structure. Such structures partition the cache into two parts, and use them for data elements
that exhibit different behaviors1. In many cases, data elements can also move from one part to the
other. For example, data may first be stored in a short-term buffer, and only data that is identified
as important will be promoted into the long-term cache. The identification of a certain item as
important can be done based on the references it received while in the short-term buffer: if it is
referenced again and again, it is identified as part of the core and promoted.

In this paper, we introduce a formal framework that extends Denning’s definition of a work-
ing set, enabling designers to explicitly express their perception of which blocks in the working
set are considered important. This framework uses logical predicates to distinguish between the
important subset — the core — and the remaining blocks. An example of a predicate that can be
used to identify the core is “the block is accessed at least 16times when brought into the cache”.
The extraction of an explicit predicate enables qualitative comparison between different caching
mechanisms and implementations. In particular, it decouples thenotion of the working set’s core
from the actualcaching mechanism used to implement it.

While the core working set framework is aimed for use with anycaching mechanism, we focus
our exploration on the synergy between the skewed distribution of memory references and dual
cache structures. Defining the core based on the intensity ofmemory references naturally leads to
a dual design, where one part of the cache is used for the core data, while the more transient data
is served by another part. In effect this filters non-core data and prevents them from polluting the
cache structure used for core data.

We start by motivating this distinction and showing that many benchmarks indeed have a rela-
tively well-defined core (Section 2). We then suggest using predicates as a framework for defining
the core (Section 3). Finally, we show that various previousproposals for dual cache structures
can be interpreted as attempts to implement improved support for caching the core working set
(Section 4).

1We differentiate this from asplit cache structure, where one part is used for data and the otherfor instructions, but
some authors use the terms interchangeably.

2

168.wupwise DL1

references
1 10 100 1000 10 4 10 5

pr
ob

ab
ili

ty

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

cache
res.

references

joint
ratio
16/84

W1/2=3.26

N1/2=1.07

168.wupwise IL1

references
1 10 100 1000 10 4 10 5 10 6 10 7 10 8

pr
ob

ab
ili

ty

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

joint
ratio
5/95

W1/2=0.36

N1/2=0

177.mesa DL1

references
1 10 100 1000 10 4 10 5 10 6

pr
ob

ab
ili

ty

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

joint
ratio
10/90

W1/2=2.05

N1/2=0.2

177.mesa IL1

references
1 10 100 1000 10 4 10 5 10 6 10 7 10 8

pr
ob

ab
ili

ty

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

joint
ratio
14/88

W1/2=4.65

N1/2=0.02

Figure 1:Mass-count disparity plots for memory accesses in select SPEC benchmarks, using the
ref input.

2 The Skewed Popularity of Memory Addresses

Locality of reference is one of the best-known phenomena of computer workloads. This is usually
divided into two types: spatial locality, in which we see accesses to addresses that arenear an
address that was just referenced, and temporal locality, inwhich we seerepeated references to
the same address. Temporal locality is actually the result of two distinct phenomena. One is the
skewed popularity of different addresses, where some are referenced a lot of times, while others
are only referenced a few times. The other is correlation in time: accesses to the same address
are bunched together in a burst of activity, rather than being distributed uniformly throughout the
execution. While the intuition of what “temporal locality”means tends to the second of these, the
first is actually the more important effect.

The skewed popularity of memory blocks is well-known, but has seldom been quantified. Such
quantification is possible using mass-count disparity plots, as described in the side-bar and demon-
strated in Fig. 1. In the following we consistently define memory objects to be 64 bytes long,
because this is the most common size for a cache line. Popularity is measured by the number of
references to such a memory object in eachcache residency, i.e. from the time it is inserted into
the cache until it is evicted. Thus if an object is referenced100 times while in the cache, is evicted,
and then is inserted again and referenced another 200 times,this is counted as two residencies with

3

Sidebar: Mass-Count Disparity Plots

Mass-count disparity plots are used to visualize highly skewed distributionsa. These plots
actually superimpose two distributions. The first, which wecall thecount distribution, is a
distribution on cache residencies (or blocks), and specifies how many references each resi-
dency received. ThusFc(x) will represent the probability that a cache residency is referenced
x times or less. The second, called themass distribution, is a distribution on references; it
specifies the popularity of the residency to which the reference pertains. ThusFm(x) will
represent the probability that a reference ispart of a residency that receivesx references or
less.
Mass-count disparity refers to situations where the two distributions are quite distinct. Exam-
ples for two applications in the SPEC 2000 benchmark suite are shown in Fig. 1 (results were
obtained using the SimpleScalar toolset). The simplest metric for quantifying the disparity
is thejoint ratio, which is the unique point in the graphs where the sum of the two CDFs is
unity (if the CDFs have a discrete mode, as sometimes happens, the sum may be different).
For example, in the case of the mesa benchmark data stream, the joint ratio is 10/90. This
means that 90% of the memoryreferences are directed at only 10% of thecache residencies,
whereas the remaining 90% of the residencies get only 10% of the references — a precise
example of the proverbial 10/90 principle. Thus a typical residency is only referenced a rather
small number of times (up to 10 or 20 in this case), whereas a typical reference is directed at
a long residency (one that is referenced thousands of times).
Two other metrics that are especially important in the context of dual cache designs areW1/2

andN1/2. TheW1/2 metric assesses the combined weight of the half of the residencies that
receive the fewest references. For mesa, these 50% of the residencies together get only 2.05%
of the references. TheN1/2 metric characterizes the other end of the distribution: it gives the
fraction of heavy-weight residencies needed to account forhalf of the total references. For
mesa, just 0.2% of the residencies are enough.
Reference
a D. G. Feitelson. Metrics for mass-count disparity. InModeling, Anal. & Simulation of
Comput. & Telecomm. Systems, pages 61–68, Sep 2006.

popularities of 100 and 200 references respectively. This characterization obviously depends on
the cache design; the results shown here are for a 16 KB directmapped cache.

As noted in the sidebar, skewed popularity as measured by mass-count disparity (and in partic-
ular, by the joint ratio) is a generalization of the well-known 10/90 principle: 10% of the objects
receive 90% of the activity, and vice versa. In the SPEC 2000 benchmarks, when the graphs were
well-formed (that is, not dominated by a large discrete step) the actual values observed were in the
range 10/90 to 33/67 for the data stream, and 1/99 to 24/76 forthe instruction stream. In cases that
are dominated by uniform access (that is, a very large fraction of the blocks are all accessed in the
same way) there was naturally little if any mass-count disparity.

A highly-skewed joint ratio implies a partitioning of the residencies into two distinct groups:
very many residencies that together receive only a small fraction of the references, and a small

4

group of residencies that together account for the vast majority of references — what we call the
core working set. Many dual cache structures attempt to capture this division. The motivation
is straightforward. The lightly used residencies do not benefit very much from the caching, and
should not be allowed to pollute the cache. Rather, the caches should be used preferentially to store
heavily used data items, such as the minuscule number of blocks that together account for half of
all references. The dual structure helps in identifying andhandling the two types correctly.

While the skewed distribution of popularity is a major contributor to temporal locality, one
should nevertheless acknowledge the fact that references do display a bursty behavior. To study
this, we looked at how many different blocks are referenced between successive references to a
given block. The results indicate that the majority of inter-reference distances are indeed short. We
can then define bursts to be sequences of references to a blockthat are separated by references to
less than say 256 other blocks. Using this we can study the distribution of burst lengths, and find
them to be generally short, ranging up to about 32 referencesfor most benchmarks. However, they
are long enough to prohibit the use of a low threshold to identify blocks that belongs to the core
working set with confidence. The core members, in turn, exhibit extremely long bursts; these are
actually blocks that are used continuously, and therefore do not have long gaps between successive
accesses, so all their accesses will seem to be one long burst.

3 Definition of Core Working Sets

Denning’s definition of working sets [3] is based on the principle of locality, which he defined
to include three components [4]: a nonuniform popularity ofdifferent addresses, a slow change
in the reference frequency to any given page, and a correlation between the immediate past the
near future. Our data strongly supports the first component,that of non-uniform access. But
it casts a doubt on the other two, by demonstrating the continued access to the same high-use
memory objects, while much of the low-use data is only accessed for very short and intermittent
time windows. In addition, transitions between phases of the computation may be expected to be
sharp rather than gradual, and moreover, they will probablybe correlated for multiple memory
objects. This motivates a new definition that focuses on the persistent high-usage data in each
phase, namely the core working set.

The definition of a working set by Denning is the set ofall distinct blocks that were accessed
within a window ofT instructions [3]. We will denote this set asDT (t), to mean “the Denning
working set at timet using a window size ofT ”. Our findings imply that this definition is deficient
in the sense that it does not distinguish between the heavilyused items and the lightly used ones.

As an alternative, we define thecore working set to be those blocks that appear in the working
set and are reused a significant number of times. This will be denotedCT,P (t), where the extra
parameterP reflects a predictor used to identify core members; the predictor will be expressed
as a predicate that evaluates to “true” for core members, and“false” for other blocks. This is a
generalization of the Denning working set, which can simplybe expressed as the core working set
with a predicate that is always true:

DT (t) ≡ CT,true(t)

5

The predicateP is meant to capture reuse of memory. In the context of virtualmemory, tem-
poral locality has been used to justify page replacement algorithms such as LRU or the clock
algorithm. In particular, Belady emphasized the importance of use bits to identify recently used
data that should be retained [1]. Our reuse predictors can beseen as an extension of this practice.
The generality of core working sets can also be demonstratedby its applicability to block prefetch-
ers: at any timet, a prefetcher would estimate the core at a future timet + n. Therefore, the
prefetcher’s core can be described asCT,P (t+n), whereP represents the predicate best describing
the prefetcher designer’s perception of the important subset of blocks.

The simplest reuse predictor is based on counting the numberof references to a given block.
Let B represent a block ofk words. Letwi, i = 1, . . . , k be the words in blockB. Let r(w) be
the number of references to wordw within the window of interest. Using this, we can define the
predicatenB that evaluates to true if block B was referencedn times or more:

nB ≡

k∑

i=1

r(wi) ≥ n

For example, the predicate 3B identifies those blocks that were referenced a total of 3 times or
more.

The nB predicates are meant to identify a combination of spatial and/or temporal locality,
without requiring either type explicitly. Alternatively,we can write a temporal-locality predicate
that requires that some specific wordw in block B was referencedn times or more:

nW ≡ ∃w ∈ B s.t. r(w) ≥ n

We can also write a predicate that requires a certain number of distinct words to be referenced, to
express spatial locality.

Given this rich set of possible predicates, the question is how to select one that captures the
notion of a core working set. Based on the discussion on bursty access patterns above, it seems
advisable to require a significant number of references. In particular, we have found 16B to be a
promising predicate.

The effect of the above definitions is illustrated in Fig. 2. Using the SPEC gcc benchmark as an
example, the top graph simply shows the access pattern to thedata. Below it we show the Denning
working setD1000(t) (i.e. for a window of 1000 instructions) and the core workingsetC1000,16B(t).
As we can easily see, the core working set is indeed much smaller, typically being just 10–20%
of the Denning working set. Importantly, it eliminates all of the sharp peaks that appear in the
Denning working set. Nevertheless, as shown in the bottom graph, it routinely captures about 60%
of the memory references.

4 Cache Bypass and Dual Cache Structures

We have established that memory blocks can be roughly divided into two groups: thecore
working set, which includes a relatively small number of blocks that are accessed a lot, and the

6

 4.8305e+09

 4.831e+09

 4.8315e+09

 4.832e+09

 4.8325e+09

A
dd

re
ss

 5.3685e+09
 5.369e+09

 5.3695e+09
 5.37e+09

 5.3705e+09
 5.371e+09

 5.3715e+09
 5.372e+09

 5.3725e+09
 5.373e+09

 5.3735e+09
 5.374e+09

 5.3745e+09
 5.375e+09

 5.3755e+09
 5.376e+09

 5.3765e+09
 5.377e+09

 5.3775e+09
 5.378e+09

A
dd

re
ss

Memory acceses: gcc data

 0
 50

 100
 150
 200
 250
 300
 350
 400

W
or

ki
ng

 s
et

 s
iz

e

Working set: gcc data

Denning
16B core

 0

 20

 40

 60

 80

 100

0 1e+09

2e+09

3e+09

4e+09

5e+09

P
er

ce
nt

Instruction number

Working set: Core / Denning

16B mass% 16B count%

Figure 2:Examples of memory access patterns and the resulting Denning and core working sets.

rest, which are accessed only a few times in a bursty manner. The question then is how this can be
put to use to improve caching.

The principle behind optimal cache replacement is very simple: when space is needed, replace
the item that will not be used for the most time in the future (or never) [1]. In particular, it should
be noticed that it is certainly possible that the optimal algorithm will decide to replace thelast item
that was brought into the cache, if all other items will be accessed before this item is accessed
again. This would indicate that this item was only inserted into the cache as part of the mechanism
of performing the access; it was not inserted into the cache in order to retain it for future reuse.

By analyzing the reference streams of SPEC benchmarks it is possible to see that this sort
of behavior does indeed occur in practice. For example, we found that if the references of the
gcc benchmark were to be handled by a 16 KB fully-associativecache, 30% of insertions would

7

Sidebar: Formalizing the Benefits of Cache Bypass

Why is cache bypass a good idea? Here we formalize its benefitsusing a simple, specific example
cache configuration. Assume a cache withn2+n cache lines, organized into eithern or n+1 equal
sets. In either case, the address space is partitioned inton equal-size disjoint partitions (assuming
n is a power of 2) using the memory address bits. The two organizations are used as follows.

Set associative: there aren sets ofn + 1 cache lines each, and each serves a distinct partition of
the address space. This is the commonly used approach.

Bypass: there aren sets ofn cache lines each, and each serves a distinct partition of theaddress
space, as in the conventional approach. Then + 1st set (which we will call the “extra” set)
can accept any address and serves as a bypass.

These two designs expose a tradeoff: in the set associative design, each set is larger by one, re-
ducing the danger of conflict misses. In the bypass design, the extra set is not tied to any specific
address, increasing flexibility.
Considering these two options, it is relatively easy to see that the bypass design has the advantage.
Formally this is shown by two claims.

Claim 1 The bypass design can simulate the set associative design.

Proof: While each cache line in the extra set can hold any address from the address space, we are
not required to use this functionality. Instead, we can limit each cache line to one of the partitions
in the address space. Thus the effective space available forcaching each partition becomesn + 1,
just like in the set associative design.

The conclusion from this claim is that the bypass design neednever suffer more cache misses than
the set associative design. At the same time, we have the following claim that establishes that it
actually has an advantage.

Claim 2 There exist access patterns that suffer arbitrarily more cache misses when served by the
set associative design than when served by the bypass design.

Proof: An access pattern that provides such an example is the following: repeatedly access2n
addresses from any single address space partition in a cyclic mannerm times. When using the set
associative design, only a single set withn cache lines will be used. At best, an arbitrary subset
of n − 1 addresses will be cached, and the othern + 1 will share the remaining cell, leading to a
total ofO(nm) misses. When using the bypass design, on the other hand, all2n addresses will be
cached by using the original set and the extra set. Thereforeonly the initial2n compulsory misses
will occur. In this sense, a bypass mechanism can potentially relieve pressure on specific cache sets
resulting from bursty conflict misses. By extending the length of this pattern (i.e. by increasingm)
any arbitrary ratio can be achieved.

More generally, the number of sets and the set sizes need not be the same. The size of the extra set
need also not be the same as that of all the other sets.

8

belong to this class; in other benchmarks, we saw results ranging from 13% to a whopping 86%.
Returning to gcc, if the cache is 4-way set associative the placement of new items is much more
restricted, and a full 60% of insertions would be immediately removed by the optimal algorithm.
These results imply that the conventional wisdom favoring the LRU replacement algorithm is of
questionable merit.

It is especially easy to visualize why LRU may fail by considering transient streaming data.
When faced with such data, the optimal algorithm would dedicate a single cache line for all of it,
and let the data stream flow through this cache line. All othercache lines would not be disturbed.
Effectively, the optimal algorithm thus partitions the cache into the main cache (for core non-
streaming data) and a cache bypass for the streaming component (non-core). The LRU algorithm,
by contradistinction, would do the opposite and lose all thecache contents.

A generalization of this observation is to partition the cache explicitly into two parts: the main
cache and a bypass area. The main cache is used to store hot data for future reuse. The bypass is
used to provide access to transient data that will not be usedmuch if at all in the future. By keeping
such data out of the main cache, we reduce cache conflicts and subsequent misses.

Many similar schemes have been proposed in the literature [13]. For example, Rivers and
Davidson propose to tag cache lines with a temporal localitybit [11]. Initially, lines are stored
in a small non-temporal buffer (in our terminology, this is the bypass area). If they are reused,
the temporal bit is set indicating that, in our terminology,these lines should be considered as core
elements. Later, when a line with the temporal bit set is fetched from memory, it is inserted into
the larger temporal cache. Park et al. also use a spatial buffer to observe usage [10]. However,
they do so at different granularities: when a word is referenced, only a small sub-line including
this word is promoted to the temporal cache. A more extreme approach is the bypass mechanism
of Johnson et al. [6]. This is based on a memory address table (MAT) which counts accesses to
different areas of memory. Then, if a low-count access threatens to displace a cached high-count
datum, it is simply loaded directly to the register file and bypasses the cache altogether. Another
scheme is the Assist cache used in the HP PA 7200 CPU [2], whichfilters out streaming (spatial
locality) data based on compiler hints.

The above schemes have the drawback of requiring historicalinformation to be maintained for
each cache lines. An alternative proposal is to use filtering. For example, Walsh and Board propose
a dual design with a direct-mapped main cache and a small fully associative filter [14]. Referenced
data is first placed in the filter, and only if it is referenced again it is promoted to the main cache.
This avoids polluting the cache with data that is only referenced once. Better filtering may be
achieved by using randomized sampling, based on the skewed popularity distributions described
above [5]. The idea is that every reference to data in the filter is sampled with a low probability,
and only memory blocks that come up in the sampling are promoted to the main cache. Due
to the mass-count disparity phenomenon, this effectively identifies those memory blocks that are
accessed a very large number of times — but without requiringhistorical data to be maintained.

A somewhat different approach is provided by Jouppi’s victim cache, which is a small auxiliary
cache used to store cache lines that were evicted from the main cache [7]. This helps reduce
the adverse effects of conflict misses, because the victim buffer is fully associative and therefore
effectively increases the size of the most heavily used cache sets. In this case the added structure is

9

not used to filter out transient data, but rather to recover core data that was accidentally displaced
by transient data. By virtue of being applied after lines areevicted, this too avoids the need to
maintain historical data.

A minimalistic, bypass-only approach, is McFarling’s dynamic exclusion cache [9]. Here cache
lines are augmented with just two state bits, the last-hit bit and the sticky bit. In particular, the
sticky bit is used to retain a desirable cache line rather than evicting it upon a conflict; the conflict-
ing line is served directly to the processor without being cached. However, this approach is limited
to instruction streams and specifically to cases where typically only two instructions conflict with
each other.

Interestingly, dual structures are not used only to improveperformance. Sahuquillo et al. [12]
proposed a filter cache, in which a relatively small buffer isused for the most highly accessed
elements, in order to reduce bus traffic in multiprocessor systems. A similar design by Kin at al.
[8] was proposed in order to reduce energy consumption, by allowing the main cache to remain in
power save mode most of the time. Some of the dual structures described above also reduce power
consumption, by virtue of using a direct-mapped design for part of the cache [10, 5]. Thus they
can lead to a win-win situation, where both performance and power characteristics are improved,
instead of having to trade them off against each other.

5 Conclusions

Processor caches have been an area of active research for decades. Nevertheless, additional work
is still important due to the continuing gap between processors and memory. In fact, the problem is
expected to intensify with the advent of multicore processors, due to the replication of L1 caches
for each core and the increased pressure on shared L2 caches.

One way to continue and improve is by taking cues from workload patterns. We have shown
that memory references display mass-count disparity, witha relatively small fraction of memory
blocks receiving a relatively large fraction of the references. But this skewed distribution is at
odds with the classic homogeneous definition of working sets, that puts all memory blocks in
the working set on an equal footing. We therefore propose thecore working set framework as an
extension and refinement of Denning’s working set. This formal framework uses logical predicates
to distinguish between the more important subset of the dataand the rest. Such a distinction, in
turn, motivates dual cache structures that handle core and non-core data differently. By matching
the handling to the access pattern, one can even achieve a win-win situation, which provides both
performance improvements and power reduction.

References

[1] L. A. Belady. A study of replacement algorithms for a virtual-storage computer.IBM Syst. J.,
5(2):78–101, 1966.

[2] K. K. Chan, C. C. Hay, J. R. Keller, G. P. Kurpanek, F. X. Schumacher, , and J. Zheng. Design
of the HP PA 7200 CPU.Hewlett-Packard Journal, 47(1), Feb 1996.

10

[3] P. J. Denning. The working set model for program behavior. Commun. ACM, 11(5):323–333,
May 1968.

[4] P. J. Denning and S. C. Schwartz. Properties of the working-set model. Commun. ACM,
15(3):191–198, Mar 1972.

[5] Y. Etsion and D. G. Feitelson. L1 cache filtering through random selection of memory ref-
erences. InIntl. Conf. on Parallel Arch. and Compilation Techniques, pages 235–244, Sep
2007.

[6] T. L. Johnson, D. A. Connors, M. C. Merten, and W. mei W. Hwu. Run-time cache bypassing.
IEEE Trans. on Computers, 48(12):1338–1354, 1999.

[7] N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers. InIntl. Symp. on Computer Architecture, pages 364–
373, 1990.

[8] J. Kin, M. Gupta, and W. H. Mangione-Smith. Filtering memory references to increase energy
efficiency.IEEE Trans. on Computers, 49(1):1–15, Jan 2000.

[9] S. McFarling. Cache replacement with dynamic exclusion. In Intl. Symp. on Computer
Architecture, pages 191–200, New York, NY, USA, 1992. ACM Press.

[10] G.-H. Park, K.-W. Lee, J.-H. Lee, T.-D. Han, and S.-D. Kim. A power efficient cache struc-
ture for embedded processors based on the dual cache structure. In Workshop Languages,
Compilers, and Tools for Embedded Systems, pages 162–177. Springer Verlag, 2000.

[11] J. A. Rivers and E. S. Davidson. Reducing conflicts in direct-mapped caches with a
temporality-based design. InIntl. Conf. on Parallel Processing, volume 1, pages 154–163,
1996.

[12] J. Sahuquillo, S. Petit, A. Pont, and V. Milutinović. Exploring the performance of split data
cache schemes on superscalar processors and symmetric multiprocessors.Journal of Systems
Architecture, 51(8):451–469, Aug 2005.

[13] J. Sahuquillo and A. Pont. Splitting the data cache: A survey.IEEE Concurrency, 8(3):30–35,
Jul–Sep 2000.

[14] S. J. Walsh and J. A. Board. Pollution control caching. In ICCD ’95: Proc. Intl. Conf.
Computer Design, pages 300–306, Washington, DC, USA, 1995. IEEE Computer Society.

11

