IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO.86,

JUNE 2014 1489

Hybrid Dataflow/von-Neumann Architectures

Fahimeh Yazdanpanah, Carlos Alvarez-Martinez, Daniel Jimenez-Gonzalez, and
Yoav Etsion, Member, IEEE

Abstract—General purpose hybrid dataflow/von-Neumann architectures are gaining attraction as effective parallel platforms.
Although different implementations differ in the way they merge the conceptually different computational models, they all follow
similar principles: they harness the parallelism and data synchronization inherent to the dataflow model, yet maintain the
programmability of the von-Neumann model. In this paper, we classify hybrid dataflow/von-Neumann models according to two
different taxonomies: one based on the execution model used for inter- and intrablock execution, and the other based on the
integration level of both control and dataflow execution models. The paper reviews the basic concepts of von-Neumann and dataflow
computing models, highlights their inherent advantages and limitations, and motivates the exploration of a synergistic hybrid
computing model. Finally, we compare a representative set of recent general purpose hybrid dataflow/von-Neumann architectures,
discuss their different approaches, and explore the evolution of these hybrid processors.

Index Terms—Dataflow architectures, von-Neumann model, parallel processors, hybrid systems, scheduling and task partitioning

1 INTRODUCTION

POWER—EFFICIENCY is today one of the main challenges in
computer architecture. One of the approaches for
tackling this challenge is the use of homogeneous and
heterogeneous multi-core architectures that help to: 1) use
more power-efficient cores, and 2) exploit the existing
parallelism on the applications. These multi-core architec-
tures are conventionally based on the von-Neumann
(traditional control flow) computing model, which is
inherently sequential because of its use of a program
counter and an updateable memory. Nevertheless, the von-
Neumann computing model is able to exploit some limited
instruction level parallelism (ILP), data level parallelism
(DLP), and thread level parallelism (TLP). However, DLP
and TLP should be explicitly expressed by the programmer
and/or compiler, while ILP is limited by the sequential
execution of the instructions.

The dataflow model is a recurrent alternative to the von-
Neumann execution model. The dataflow computing
model is known to overcome the limitations of the
traditional control flow model by fully exploiting the
parallelism inherent in programs. In the dataflow model,
the operands trigger the execution of the operation to be
performed on them. In other words, dataflow architectures
use the availability of data to fetch instructions rather than
the availability of instructions to fetch data. Unlike the

o F. Yazdanpanah, C. Alvarez-Martinez, and D. Jimenez-Gonzalez are with
the Universitat Politecnica de Catalunya (UPC) and also with the Barcelona
Supercomputing Center (BSC), 08034 Barcelona, Spain. E-mail: {fahimeh,
calvarez, djimenez|@ac.upc.edu.

e Y. Etsion is with the Electrical Engineering and Computer Science
Departments, Technion-Israel Institute of Technology, Haifa 32000,
Israel. E-mail: yetsion@tce.technion.ac.il.

Manuscript received 10 May 2012; revised 13 Feb. 2013; accepted 9 Apr.
2013. Date of publication 18 Apr. 2013; date of current version 16 May 2014.
Recommended for acceptance by M. Kandemir.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2013.125

von-Neumann model, the dataflow model is neither
based on memory structures that require inherent state
transitions, nor does it depend on history sensitivity and
program counter to execute a program sequentially.
These properties allow the use of the model to represent
maximum concurrency to the finest granularity and to
facilitate dependency analysis among computations.

In this sense, the dataflow model has the potential to be
an elegant execution paradigm with the ability to exploit
the inherent parallelism available in applications. Further-
more, this model is self-scheduled and more power-
efficient than the control flow model, which shows
inefficiencies [41], [51], [56]. However, although the
benefits of the dataflow have been known for a long time,
this model has not yet been fully exploited for commercial
systems. In fact, implementations of the model have failed
to deliver the promised performance because the dataflow
model has some inefficiencies and limitations. One signif-
icant drawback of the dataflow model is its inability to
effectively manage data structures, memory organizations
and traditional programming languages.

Therefore, in order to increase the performance and
power efficiency of multi-core systems, these systems can
be designed as hybrid architectures that combine the
dataflow and von-Neumann models of computation. The
convergence of the dataflow and control flow execution
models allows for the incorporation of conventional control
flow execution into the dataflow approach, or for exploit-
ing a dataflow approach in von-Neumann architectures.
This alleviates the inefficiencies associated with both
methods. Hybrid dataflow/von-Neumann models there-
fore bind the power of the dataflow model for exposing
parallelism together with the execution efficiency of the
von-Neumann model in order to overcome the limitations
of both models. While different hybrid implementations
differ in the way they merge the two conceptually different
execution models, they all follow similar principles.

The objective of this paper is to provide a better
understanding of the evolution of the hybrid models and

1045-9219 © 2013 IEEE. Personal use is permitted, but re}laublication/ redistribution requires IEEE permission.

See http:/ /www.ieee.org/publications_standards/pub:

ications/rights/index.html for more information.

1490

their main characteristics. We classify them according to
two taxonomies: one based on the execution model used for
inter- and intrablock execution, and the other based on the
integration level of both the control flow and the dataflow
models. Using these taxonomies, we classify a representa-
tive set of recent general purpose hybrid models (works
from the year 2000 or later), absent to the best of our
knowledge from other surveys [101], [109], [110], as well as
summarizing their main features and compare their
benefits and issues. However, in order to acquire a fully
historical point of view, we also describe some of the
previous main contributions on hybrid models. On the
other hand, to keep the length of this survey within
bounds, software frameworks and specific purpose data-
flow accelerators are regarded as beyond the scope of the
paper.

The rest of the article is organized as follows: Section 2
discusses the von-Neumann (control flow) computing
model. Section 3 overviews the dataflow computing model
as well as different dataflow architectures. Section 4
presents hybrid dataflow/von-Neumann models, and
classifies them according to two taxonomies. In Section 5,
we describe some recent general purpose hybrid dataflow/
von-Neumann architectures. A comparison and discussion
on main features of recent hybrid architectures and their
common trends are given in Section 6. Finally, we conclude
in Section 7.

2 VON-NEUMANN COMPUTING MODEL

The von-Neumann computation model [128] is the most
common and commercially successful model to date. The
main characteristic of this model is a single separate
storage structure (the memory) that holds both program
and data. Another important characteristic is the transfer of
control between addressable instructions, using a program
counter (PC). The transfer is either implicit (auto-increment
of PC) or through explicit control instructions (jumps and
branches, assignment to PC). It is for this reason that the
von-Neumann model is commonly referred to as a control
flow model.

A key tenet of the model is the set of memory semantics
it provides in which loads and stores occur in the order in
which the PC fetched them. Enforcing this order is required
to preserve true (read-after-write), output (write-after-
write), and anti (write-after-read) dependences between
instructions.

Furthermore, the serial execution of instructions is a
hallmark of the von-Neumann architecture. However, this
simplistic sequential execution, together with data, control
and structural hazards during the execution of instruc-
tions, may be translated into an under-utilization of the
hardware resources. In that sense, exploiting parallelism at
different granularities—instruction level parallelism (ILP),
data level parallelism (DLP), and thread level parallelism
(TLP)—is a mechanism for increasing hardware resource
utilization.

Pipelined (IBM Stretch 1959 [12]) and superscalar [2]
processors that try to process several instructions at the
same time are the most common examples of ILP. Arguably
the most notable class of superscalar processors is that of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO. 6,

JUNE 2014

the dynamically scheduled Out-of-Order processors [92]
that maintain a window of pending instructions dispatch-
ing them in dataflow manner. In all these processors,
parallelism is further enhanced by using a set of techniques
such as register renaming, branch prediction and specula-
tive execution, which are used in addition to dynamically
dispatching independent instructions in parallel to multi-
ple functional units (see details in Section 5.1). Another
way of exploiting ILP is by means of very long instruction
word (VLIW) processors [36]. The explicitly parallel
instruction sets for VLIW enable the compiler [31] to
express instruction independence statically in the binary
code, thereby reducing the necessary hardware support for
dynamically managing data and control hazards in Out-of-
Order processors.

Architectures with DLP apply a single operation to
multiple, independent data elements. Probably the most
common examples of DLP are the single instruction
multiple data (SIMD) extensions. SIMD extensions are
mechanisms that statically express parallelism in the form
of a single instruction that operates on wide, multi-element
registers (a method sometimes referred to as sub-word
parallelism). These extensions appeared in supercompu-
ters such as the Thinking Machines CM-1 [55] and CM-2
[19], and are now ubiquitous in all general purpose
processors. A derivative of SIMD processors, known as
the single instruction multiple thread (SIMT) architecture,
is nowadays common in graphics processing units
(GPUs) [87].

Finally, TLP (or multi-threading) is applied by execut-
ing parallel threads on separate processing units. Never-
theless, some architectures utilize this coarse-grain
parallelism to hide memory latencies and improve the
utilization of hardware resources by interleaving multiple
threads on a single physical processor. This technique is
known as simultaneous multi-threading (SMT) [124], [130]
and has been implemented in large machines such as HEP
[112] and Tera [4] (as well as many others [1], [75], [129]).
SMT has even made it to consumer products, starting with
the Pentium 4 [81] and Power 5 [17] processors. However,
despite all these efforts, effective utilization of parallel
von-Neumann machines is inherently thwarted by the
need to synchronize data among concurrent threads.
Thread synchronization and memory latencies were
identified [7] as the fundamental limitations of multi-
processors.

The need for efficient data synchronization has grave
programmability implications and has placed emphasis on
the cache coherency and consistency in shared-memory
machines, particularly as the number of processing units
continuously increase [14]. Transactional memory archi-
tectures [53] aim to alleviate that problem somewhat by
providing efficient and easy-to-use lock-free data synchro-
nization. Alternatively, speculative multithreading archi-
tectures exploit TLP dynamically by scheduling the threads
in parallel [114], as Out-of-Order architectures for instruc-
tions, masking the synchronization issues. Experience
shows that multithreaded control flow machines are
feasible, though some doubt their scalability due to two
major issues that limit their parallel processing capabilities:
memory latency and synchronization.

YAZDANPANAH ET AL.: HYBRID DATAFLOW/VON-NEUMANN ARCHITECTURES

In summary, improvements in the memory system, ILP,
DLP and TLP significantly reduce the memory latency
issue of von-Neumann architectures, but they are still
limited by the execution in control flow manner. On the
other hand, the dataflow architectures can overcome this
limitation thanks to the exploitation of the implicit
parallelism of programs [7], [23].

3 DATAFLOW COMPUTING MODEL

The dataflow computing model represents a radical
alternative to the von-Neumann computing model. This
model offers many opportunities for parallel Processing,
because it has neither a program counter nor a global
updatable memory, i.e., the two characteristics of the von-
Neumann model that inhibit parallelism. Thanks to these
properties, it is extensively used as a concurrency model in
software and as a high-level design model for hardware.

The principles of dataflow were originated by Karp and
Miller [65]. They proposed a graph-theoretic model for the
description and analysis of parallel computations. Shortly
after, in the early 1970s, the first dataflow execution models
were developed by Dennis [26] and Kahn [64]. Dennis
originally applied the dataflow idea to the computer
architecture design while Kahn used it in a theoretical
context for modeling concurrent software.

The dataflow model is self-scheduled since instruction
sequencing is constrained only by data dependencies.
Moreover, the model is asynchronous because program
execution is driven only by the availability of the operands
at the inputs to the functional units. Specifically, the firing
rule states that an instruction is enabled as soon as its
corresponding operands are present, and executed when
hardware resources are available. If several instructions
become fireable at the same time, they can be executed in
parallel. This simple principle provides the potential for
massive parallel execution at the instruction level. Thus,
dataflow architectures implicitly manage complex tasks
such as processor load balancing, synchronization, and
accesses to common resources.

A dataflow program is represented as a directed graph,
called dataflow graph (DFG). This consists of named nodes
and arcs that represent instructions and data dependencies
among instructions, respectively [24], [66]. Data values
propagate along the arcs in the form of packets, called
tokens. A DFG can be created at different computing stages.
For instance, it can be created for a specific algorithm used
for designing special-purpose architectures (common for
signal processing circuits). However, most dataflow-based
systems convert a high-level code into DFG at compile
time, decode time, or even during execution time, depend-
ing on the architecture organization. Unlike control flow
programs, binaries compiled for a dataflow machine
explicitly contain the data dependency information.

In practice, real implementation of the dataflow model
can be classified as static (single-token-per-arc) and
dynamic (multiple-tagged-token-per-arc) architectures.
The first dataflow architecture [28] followed the static
model. This approach allows at most one token to reside on
any arc. This is accomplished by extending the basic firing
rule as follows: A node is enabled as soon as tokens are

1491
For (i=1toN)
Si = (axbi)t (cixdy)
itr. 1 itr.2 itr.N
"i E < ,d a b dra bho & ay byon dy
2
By
5
=}
-+ Ack.
S T Signal Sy S, Sn

(@ (b)
Fig. 1. DFG of a loop (a) the static and (b) the dynamic dataflow.

present on its input arcs and there is no token on any of its
output arcs [29]. In order to implement the restriction of
having at most one token per arc, and to guard against non-
determinacy, extra reverse arcs carry acknowledge signals
from consuming to producing nodes [29].

The implementation of the static dataflow model is
simple, but since the graph is static, every operation can be
instantiated only once, and thus loop iterations and
subprogram invocations can not proceed in parallel.
Fig. 1a shows an example of static dataflow graph for
computing a loop which is executed N times sequentially
(note that in this figure, the graph for controlling iteration
of the loop is not illustrated). Despite this drawback, some
machines were designed based on this model, including
the MIT Dataflow Architecture [28], [30], DDM1 [25], LAU
[96], and HDFM [125].

The dynamic dataflow model tries to overcome some of
the deficiencies of static dataflow by supporting the
execution of multiple instances of the same instruction
template, thereby supporting parallel invocations of loop
iterations and subprogram. Fig. 1b shows the concurrent
execution of different iterations of the loop. This is
achieved by assigning a tag to each data token representing
the dynamic instance of the target instruction (e.g.,
ai, as,...). Thus, an instruction is fired as soon as tokens
with identical tags are present at each of its input arcs. This
enabling rule also eliminates the need for acknowledge
signals, increases parallelism, and reduces token traffic.
Dynamic dataflow machines employ two types of control
instructions: Data-steering instructions and Tag management
instructions. Data-steering instructions explicitly guide data
values to the correct path after a branch, which is a control
flow instruction. Each live value requires its own data-
steering instruction [26]. Tag management instructions are
inserted into tagged-token dataflow programs to differen-
tiate between multiple dynamic instances of named
program values (e.g. variables in executing iterations of a
loop simultaneously). Notable examples of this model are
the Manchester Dataflow [50], the MIT Tagged-Token [6],
DDDP [70] and PIM-D [62].

The dynamic dataflow can execute out-of-order, by-
passing any token with complex execution and delays the
remaining computation. Another noteworthy benefit of
this model is that little care is required to ensure that tokens
remain in order.

The main disadvantage of the dynamic model is the
extra overhead required to match tags on tokens. In order
to reduce the execution time overhead of matching tokens,
dynamic dataflow machines require expensive associative

1492

memory implementations [50]. One notable attempt to
eliminate the overheads associated with the token store is
the Explicit Token Store (ETS) [22], [54]. The idea is to
allocate a separate memory frame for every active loop
iteration and subprogram invocation. Since frame slots are
accessed using offsets relative to a frame pointer, the
associative search is eliminated. To make that concept
practical, the number of concurrently active loop itera-
tions must be controlled. Hence, the condition constraint
of k-bounded loops was proposed [9], which bounds the
number of concurrently active loop iterations. The Monsoon
architecture [90] is the main example of this model.

The dataflow model has the potential to be an elegant
execution paradigm with the ability to exploit inherent
parallelism available in applications. However, implemen-
tations of the model have failed to deliver the promised
performance due to inherent inefficiencies and limitations.
One reason for this is that the static dataflow is unable to
effectively uncover large amount of parallelism in typical
programs. On the other hand, dynamic dataflow architec-
tures are limited by prohibitive costs linked to associative
tag lookups, in terms of latency, silicon area, and power
consumption.

Another significant problem is that dataflow architec-
tures are notoriously difficult to program because they rely
on specialized dataflow and functional languages. Data-
flow languages are required in order to produce large
dataflow graphs that expose as much parallelism as
possible to the underlying architecture. However, these
languages have no notion of explicit computation state,
which limits the ability to manage data structures (e.g.,
arrays). To overcome these limitations, some dataflow
systems include specialized storage mechanisms, such as
the I-structure [8], which preserve the single assignment
property. Nevertheless, these storage structures are far
from generic and their dynamic management complicates
the design.

In contrast, imperative languages such as C, C++, or Java
explicitly manage machine state through load/store opera-
tions. This modus operandi decouples the data storage
from its producers and consumers, thereby concealing the
flow of data and making it virtually impossible to generate
effective (large) dataflow graphs. Furthermore, the mem-
ory semantics of C and C++ support arithmetic operations
on memory pointers, which result in memory aliasing,
where different semantic names may refer to the same
memory location. Memory aliasing cannot be resolved
statically, thus further obfuscating the flow of data from
between producers and consumers. Consequently, data-
flow architectures do not effectively support imperative
languages.

In summary, the dataflow model is effective in uncover-
ing parallelism, due to the explicit expression of parallel-
ism among dataflow paths and the decentralized execution
model that obviates the need for a program counter to
control instruction execution. Despite these advantages,
programmability issues limit the usefulness of dataflow
machines. Moreover, the lack of a total order on instruction
execution makes it difficult to enforce the memory ordering
that imperative languages require. While this section
describes the key features, characteristics and limitations

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO. 6,

JUNE 2014

of the dataflow model, a complete survey of the model is
beyond the scope of this paper. For further details, we refer
the reader to more extensive literature on the subject [85],
[115], [126].

4 HyBRID DATAFLOW/VON-NEUMANN MODELS

The inherent limitations of both dataflow and von-
Neumann execution models motivate the exploration of a
convergent model that can use synergies to leverage the
benefits of both individual models. Therefore, the hybrid
models try to harness the parallelism and data synchroni-
zation inherent to dataflow models, while maintaining
existing programming methodology and abstractions that
are largely based on von-Neumann models. While different
hybrid implementations differ in the way they merge the
two conceptually different models, they all follow similar
principles.

Most notably, hybrid models alleviate the inefficiencies
associated with dataflow model, either by increasing the
basic operation granularity or by limiting the size of the
DFG. Additionally, they incorporate control flow abstrac-
tions and shared data structures. As a result, different
hybrid architectures employ a mix of control flow and
dataflow instruction scheduling techniques using different
partial scheduling methods. Furthermore, in the hybrid
models, nodes of a DFG vary between a single instruction
(fine-grain) to a set of instructions (coarse-grain).

A further significant benefit of hybrid models is clearly
evident in their memory models. Hybrid models combine
single assignment semantics, inherent to dataflow, with
consistent memory models that support external side-
effects in the form of load/store operations. This relieves
one of the biggest (if not the biggest) restriction of pure
dataflow programming: the inability to support a shared
state, and specifically shared data structures [85]. There-
fore, hybrid models are capable of executing imperative
languages. As a result, combining dataflow and von-
Neumann models facilitates designing efficient architec-
tures that benefit from both computing models, while the
remaining issue concerns the best granularity-parallelism
trade-off.

41 Evolution of Hybrid Architectures until 2000

The first idea of combining dataflow and control flow arose
in the early 1980s [63], [99], [112], [123], and included data
and memory structure management (e.g., Multithreaded
Monsoon (MT. Monsoon) [91]), self-scheduling and asyn-
chronous execution to simplify thread synchronization
(e.g., HEP [63], [112]; Tera [4]; MT. Monsoon [91]), as well
as the ability to execute both conventional and dataflow
programs in the same machine [7], [14]. Some hybrid
models [14], [60] even included a program counter to a
dataflow architecture in order to execute sequential
instructions in control flow manner. In this regard, other
studies explored the threaded dataflow model [101], [109], in
which partial data sub-graphs are processed as von-
Neumann instruction streams. In particular, given a data-
flow graph (program), each sub-graph that exhibits a low
degree of parallelism is identified and transformed into a
sequential thread of instructions. Such a thread is issued

YAZDANPANAH ET AL.: HYBRID DATAFLOW/VON-NEUMANN ARCHITECTURES

consecutively by the matching unit without matching
further tokens, except for the first instruction of the thread.
Data passed between instructions in the same thread is
stored in registers instead of being written back to memory.
These registers may be referenced by any succeeding
instruction in the thread. This improves single-thread
performance, because the total number of tokens needed
to schedule program instructions is reduced, which in turn
saves hardware resources. In addition, pipeline bubbles
caused by runtime overhead associated with token match-
ing are avoided for dyadic (two-operand) instructions
within a thread. Two threaded dataflow execution techni-
ques can be distinguished: 1) the direct token recycling
technique, which allows cycle-by-cycle instruction inter-
leaving of threads in a manner similar to multithreaded
von-Neumann computers (e.g., MT. Monsoon architec-
ture), and 2) consecutive execution of the instructions of a
single thread technique (e.g., Epsilon [46], [47] and EM-4
[5] architectures). In the second technique, the matching
unit is enhanced with a mechanism that, after firing the
first instruction of a thread, delays matching of further
tokens in favor of consecutive issuing of all instructions of
the started thread. In addition, some architectures based on
threaded dataflow use instruction pre-fetching and token
pre-matching to reduce idle times caused by unsuccessful
matches. EM-4 [5], EM-X [71] and RWC-1 [108] are
examples of this kind of architectures, which are also
referred to as macro-dataflow [78].

Until the late 80s and early 90s, the common wisdom
was that fine-grain execution was much more suited to
masking network and memory latencies than a coarse-
grain execution, and would obviously provide a much
better load leveling across processors and hence faster
execution. However, it has been demonstrated that coarse-
grain execution is equally suited to exploit parallelism as
fine-grain [83], [86], [122]. On one hand, Gao’s group [39],
[58], [121] was the first to develop a coarse-grain data flow
simulator and compiler from scratch, and to report on very
extensive evaluations of very complex applications. On the
other hand, Najjar’s group [13], [34], [35], [85], [102] focused
on modifying the Sisal compiler [77] in two ways: 1) by
generating coarse-grained data flow code from a fine-
grained one, and 2) by generating coarse-grained data flow
code from scratch using the Sisal compiler.

In addition to the coarsening of nodes in the DFG,
another technique for reducing dataflow synchronization
frequency (and overhead) is the use of complex machine
instructions, such as vector instructions. With these
instructions, structured data is referenced in block rather
than element-wise, and can be supplied in bursts while also
introducing the ability to exploit parallelism at the sub-
instruction level. This technique introduces another major
difference with conventional dataflow architectures; that
is, tokens do not carry data (except for the values true or
false). Data is only moved and transformed within the
execution stage. Examples of such machines are Stollman
[42], ASTOR [133], DGC [34], [35], and SIGMA-1 multipro-
cessor [132].

In parallel, the Out-of-Order model [59], [92], which
emerged in the late 80s, incorporated the dataflow model to
extract ILP from sequential code. This approach has been

1493

PO e S
e

PCHN-1>

PC+

PCIN o s

PCH >

|
i

PCHN-1>

pc >
PO

@ (b)

Fig. 2. Inter- and intrablock scheduling of organizations of hybrid dataflow/
von-Neumann architectures. (a) Enhanced control flow, (b) control flow/
dataflow, (c) dataflow/control flow, and (d) enhanced dataflow. Blocks are
squares and big circles.

PO

further developed by Multiscalar [114] and thread level
speculation (TLS) [98], [103], which can be viewed as
coarse-grain versions of Out-of-Order.

Efforts have been made to survey hybrid models up to
year 2000 [101], [109], [110], and also dataflow multithread
models [27], [61], [68], [78]. However, to the best of our
knowledge, since 2000 there has been no a comprehensive
survey describing hybrid architecture. Hence, the main
focus of this paper is on classifying recent hybrid data-
flow/von-Neumann architectures, which have mainly
attempted to improve the conventional architectures
exploiting several aspects of dataflow concepts [32], [67],
[76], [105], [118], or to utilize the dataflow approach as
accelerators [44], [84], [127]. Most of those recent works are
classified and compared in the following sections.

4.2 Taxonomy Based on Block Execution
Semantics

The inherent differences between dataflow and von-
Neumann execution models appear to place them at two
ends of a spectrum that covers a wide variety of hybrid
models. However, with our approach, the coarsening of the
basic operation granularity, from a single instruction to a
block of instructions, together with the inter- and intra-
block execution semantics, enable us to partition the
spectrum into four different classes of hybrid dataflow/
von-Neumann: Enhanced Control Flow, Control Flow/Data-
flow, Dataflow/Control Flow and Enhanced Dataflow class.
This taxonomy is based on whether they employ dataflow
scheduling inside and/or between code blocks. Block is
defined on the basis of the boundary between where the
two scheduling models (inter- and intrablock scheduling)
are mainly applied. In this way, the number of instruc-
tions in a block (block granularity) depends on the
specific model. Fig. 2 illustrates inter- and intrablock
scheduling of conventional organizations of hybrid data-
flow /von-Neumann architectures.

4.2.1 Enhanced Control Flow Class

Models in this class schedule blocks in control flow
manner, whereas the instructions within a block are
scheduled in a mixed approach of control flow and
dataflow manner. Fig. 2a illustrates the organization of
this class.

The main example of this class is the Out-of-Order
(restricted dataflow) model [59], [92]. The Out-of-Order

1494

model, as an extension of superscalar processors, incorpo-
rates the dataflow model only in the issue and dispatch
stages to extract ILP from sequential code. It is also referred
to as local dataflow or micro dataflow architecture [101],
[109], [110].

4.2.2 Control Flow/Dataflow Class

Models in this class schedule the instructions within a
block in dataflow manner, whereas blocks are scheduled in
control flow manner (Fig. 2b). This method is used in RISC
dataflow architectures, which support the execution of
existing software written for conventional processors.

Main examples of this class are TRIPS [105], [106],
Tartan [84], Conservation cores (C-Cores) [127], DySER [44]
and other architectures that rely on domain specific
dataflow accelerators. TRIPS was a new design that tried
to overcome the foreseen limitations of large core archi-
tectures by adding new layers of flexibility to the hardware.
Explicit dataflow execution within blocks was a necessary
way to improve fine-grain ILP while keeping hardware
complexity within bounds. TRIPS unifies dataflow and
von-Neumann into a single execution model. However,
other architectures in this class essentially use dataflow to
accelerate parts of the code (hyperblocks in Tartan; kernels
in C-Cores; phases in DySER). Their decision on which
parts of the code to accelerate is mostly static while TRIPS
uses dynamic scheduling decisions to map hyperblocks to
dataflow cores. Tartan, C-Cores and DySER use profiling to
determine the parts of the code to be accelerated in a
dataflow unit (or units), mapped on reconfigurable hard-
ware coupled to a classical von-Neumann processor.
Unlike Tartan and C-Cores, DySER also supports reconfi-
gurations at runtime. This behavior allows the DySER
architecture to capture a significant percentage of compu-
tation from a single application as multiple accelerated
phases can be mapped to the same accelerator.

4.2.3 Dataflow/Control Flow Class

Models in this class employ dataflow rules between blocks
and control flow scheduling inside the blocks (Fig. 2c). A
block is a set of sequential instructions, where data is
passed between instructions using register or memory
(coarse-grain dataflow models [101], [109], [110]). Under
these restrictions, blocks are issued by the matching unit,
and token matching needs only to be performed on a block
basis. Thus, the total number of tokens needed to schedule
program instructions is reduced, which in turn saves
hardware resources. Main examples of models of this class
are: Star-T (*T) [89], TAM [21], ADARC [117], EARTH [57],
[121], P-RISC [88], MT. Monsoon [91], Pebbles [102], SDF!
[67], DDM [76], and Task Superscalar [32].

Fig. 3 shows a further decomposition of this class based
on the number of cores and number of instructions in a
block (i.e., size of block) targeted by every specific model,
as well as the year in which it was first published. Fig. 3a
depicts the relationship between core granularity and the
publication year of the proposed architectures. First hybrid

1. Please note that here SDF is the acronym for scheduled dataflow,
as opposed to synchronous dataflow (SDF) [79]. The latter is a dataflow
based execution model for signal processing algorithms and does not
include any von-Neumann properties.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO.6, JUNE 2014
cores
T$S
Large DDM
>100) M.Monsoon SDF *
Medium .
&
EARTH
. P-RISC Pebbles
ew
(<20) TAM ADGRC
year
1985 1990 1995 2000 2005 2010
(@
cores
F
- M.Mgnsoon)] TgS
(>100) pM
Medium x
EABTH
" P-RISC
ew
(<20) Pebbles TAM ADgRC
#inst. /block
Basic block(<100) Block Hyper block(>1000)
(b)

Fig. 3. Different architectures of Dataflow/Control Flow class. (a) Number
of cores and year. (b) Number of cores and size of blocks.

designs tend to have a small number of cores, while
recently proposed architectures tend to use a larger
number of cores. Fig. 3b shows the variance in core
granularity in hybrid design. Architectures with a larger
number of cores typically use fewer numbers of instruc-
tions per block, and designs with a fewer number of cores
tend to use larger blocks (with more than 1000 instructions
per block).

4.2.4 Enhanced Dataflow Class

Models in this class use dataflow firing rules for instruc-
tions inside the blocks and for the blocks themselves. In
effect, this class consists of two-level dataflow models
(Fig. 2d) utilizing some concepts of the von-Neumann
model (e.g., storage management) to add the abilities of
running imperative languages and managing data struc-
tures. SIGMA-1 [132], Cedar [74] and WaveScalar [118] are
the main examples in this class.

4.2.56 Comparison of Hybrid Classes

Every one of the four classes presents advantages and
drawbacks. Enhanced Control Flow class machines can very
naturally execute control flow codes and uncover more
ILP than the strict von-Neumann models. However, as
the technology only allows them to address small to
medium block sizes, the amount of parallelism they can
expose is typically limited (some architectures such as Kilo-
instruction Processors [20] try to overcome this problem by
targeting much larger block sizes).

Control Flow/Dataflow class machines try to overcome the
limitations of the previous class by forcing the pure

YAZDANPANAH ET AL.: HYBRID DATAFLOW/VON-NEUMANN ARCHITECTURES

dataflow execution of the instructions inside a block. These
models attempt to expose ILP statically at the block level,
deferring memory operations to inter-block synchroniza-
tion. Indeed, the Control Flow/Dataflow general strategy has
shown a great potential in both performance and power
savings [44], [84], although it poses the same problems as
the previous class (e.g., smaller block sizes than desirable
for fully exploiting dataflow advantages at ILP level).

For their part, Dataflow/Control Flow class models have
taken advantage of the recent growth in the number of
parallel hardware structures in cores, chips, machines and
systems. As models in this class address parallelism at a
coarse grain, they are able to exploit all these resources
more effectively than conventional (von-Neumann) models
while retaining the programming model inside the blocks.

Finally, Enhanced Dataflow class models constitute a
complete rethinking of the execution problem. Since they
do not use a program counter, they face several difficulties
when executing conventional codes and managing memory
organizations, and therefore need more hardware resources
to be used effectively. On the other hand, Enhanced Dataflow
class models may be regarded as an addition to both
Dataflow/Control Flow and Control Flow/Dataflow classes, and
in this sense they posses great potential.

4.3 Taxonomy Based on Execution Model

Hybrid models can also be classified from an execution
model point of view; unified-hybrid models versus dataflow
accelerator models. In a unified-hybrid architecture, a
program must be executed using both dataflow and control
flow scheduling since both models are intimately bound in
the architecture. Although the majority of the models
presented belong to this group, it does present some
drawbacks. The additional hardware needed by the
interconnection and synchronization mechanisms (e.g.,
hardware of Out-of-Order architectures) leads to more
complexity and power consumption. Furthermore, as all
programs should be executed with the same hybrid
scheduling schema, they are not able to adapt to specific
cases in which a pure dataflow or von-Neumann model
would be better.

On the other hand, in dataflow accelerator based
architectures, the decision about which parts of the code
to accelerate is mostly static (made by the programmer or
compiler, and sometimes based on profiling). In addition, a
whole program may be executed without the use of the
dataflow accelerator. As mentioned above, Tartan, C-Cores
and DySER are architectures that use dataflow to accelerate
kernels (or hyperblocks) and thus belong to this group.

5 EXAMPLES OF RECENT HYBRID DATAFLOW/
VON-NEUMANN ARCHITECTURES

In this section, we describe recent examples of hybrid
dataflow/von-Neumann architectures for each of the
above mentioned taxonomy classes, in chronological order.
Out-of-Order architectures [59], [92], [113] are presented
for Enhanced Control Flow class. Although Out-of-Order
appeared before 2000, we included it here because of its
popularity and its significant contribution to the class, as
well as to highlight how the introduction of dataflow

1495

execution into an otherwise control flow model can
dynamically extract parallelism. TRIPS [105], [106],
WaveScalar [118], [120] and Task Superscalar [32], [33]
are presented for Control Flow/Dataflow, Enhanced Dataflow,
and Dataflow/Control flow classes respectively. Although
DySER [44] belongs to the Control Flow/Data flow class, it has
been included as a recent representation of a wide range of
pure control flow processors that use dataflow accelerators.

Other relevant architectures exist which, due to limita-
tions of space, included in the supplementary file which is
available in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/125; for instance,
MT. Monsoon and the SIGMA-1 multiprocessor, while
non-recent, are highly relevant, representations of Dataflow/
Control flow class and Enhanced dataflow class architectures,
respectively. Moreover, DDM and SDF architectures are
relevent and recent Data flow/Control Flow architectures that
are also included in the supplementary file available online.

Main characteristics of all foregoing architectures are
described in Table 1 and discussed in Section 6.

5.1 Out-of-Order Execution Model

The Out-of-Order architecture (Restricted Dataflow) [59],
[92], [113] is a fine-grain hybrid architecture belonging to
the Enhanced Control Flow class. The Out-of-Order architec-
ture is also referred to as local dataflow or micro dataflow
architectures [101], [109].

5.1.1 Execution Model

Out-of-Order processors employ dataflow principles to
extract instruction level parallelism (ILP) and optimize the
utilization of the processor’s resources. The processor relies
on hardware mechanisms that determine dynamically data
dependencies among the instructions in the instruction
window. In other words, in this paradigm, a processor
executes instructions in an order governed by the avail-
ability of input data, rather than by their original order in a
program.” In doing so, the processor can both extract ILP
and hide short data fetch latencies by processing subse-
quent instructions that are ready to run. Each instruction
window of Out-of-Order processor is a block granularity
for the intrablock scheduling.

5.1.2 Architecture Organization

Fig. 4 shows the general scheme of the Out-of-Order
execution pipeline. Instructions are fetched in order, then
after register renaming are decoded and placed into a pool
of pending instructions (the instruction window) and the
reorder buffer. The reorder buffer saves the program order
and the execution states of the instructions. For increasing
the effective instruction window size, these architectures
rely on branch prediction and speculation. Therefore, they
require complex check-pointing mechanisms to recover
from branch mis-predictions and mis-speculated execu-
tions (not shown in the Figure).

Dispatch and Issue determine the out-of-order and
dataflow execution of the microprocessor. The matching
of the executable instructions in the microprocessor is
restricted to the pending instructions of the instruction

2. The memory accesses are done in order.

1496 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO.6, JUNE 2014
TABLE |
Comparison of the Recent Hybrid Dataflow/von-Neumann Architectures. DF, CF, and DFG Stand for
Dataflow, Control Flow, and Dataflow Graph, Respectively
Out-of- Task DySER
SIGMA-1 Order MT. Monsoon DDM SDF TRIPS Wavescalar Superscalar (w/ inorder GPP)
Year 1982 1985 1991 2000 2001 2003 2003 2010 2011
DFG DFG RISC
+
ISA w/complex |RSC/ |/ thread |RISC/CISC | (preload/store |EDGE WaveScalar RisC/cisc | RISC/CISC
. CISC .) Ultra-wide insts.
machine ops. extensions + computation)
Structure-flow Outeof- Decoupled Polymorphous Wave-ordered and Profiling based
processing, or del? Explicit token | non-blocking, Decoupled (multiple parallelism | unordered Out-of-order detection of ultra-wide
Main Features |Chained X . store, CacheFlow non-blocking [modes), memory memory, . insts. compiler support
. instruction : - : task execution
hashing execution Multithreaded | policy multithreading | ordering, branch hierarchically to execute them on
hardware (prefetching) prediction interconnection DySER blocks
: 5 stage
Core SIGMA-1PE |PE . Simple . . DySER block: 8x8 FU
Granularity and SE agnostic Monsoon PE | PE agnostic processor 4x4 ALU (ET) array dynamlcally) PE agnostic / GPP: PE agnostic
scheduled pipeline
Scalability ;EISOfSES ~10FUs |>1000PEs |~ 100 PEs ~ 100 PEs ~ 100 PEs > 1000 FUs >>100PEs | < 10 DySER Blocks
) ILP, DLP,
Parallefism Lp TLP (dual | TLP TLP TLP ILP, TLP, DLP TLP, ILP TLP ILP, DLP, TLP (dual
level threaded)
threaded)
BB size BB size, <128- .
Block Vector lenath In_st.d Thread (BB) (codeblock, > one | inst. blocks 128-inst. block <6imsts. per PE . Task size (any |Equivalent to few
Granularity cctorfength | window rea thread, in TSU [(27(05inEP) |(EDGE) cachie, any num. O] ;i;¢)> 10K | hundreds of ISA insts.
size . insts. in a wave
graph mem.) <51 (39 in EP))
Dynamic DF . Dynamic DF Dynamic DF
Tnter-block dependenci static DF Static CF dependenci dependenci
nter-| oc DF CF DF (ependencies (progr er/ tatic CF (dependencies (ependencies | ¢
Scheduling specified in . (compile time) detected at specified in
compiler) SO
programs) execution time) programs)
. CF . . .
Intra-block . Hybrid . CF Static DF Dynamic DF Static DF
Scheduling Hybrid DF/CF CF/DF E;l:l;]e;ti;(;])(en CF (scheduled DF) | (compile time) (execution time) CF (compile time)
lnter—blosk X Memog / Register Token/ Frame memory X Memory /direct Register /memory
Communication | direct inter- /cache Cache . Registers . Memory
. memory and registers Inter-connection / FIFO
connection /memory
Intra-block Memoq/ Register Register / Register / . Memory / direct Memory / direct Register / . . .
. .. |direct inter- /cache Register X . Direct interconnection
Communication . memory memory Inter-connection Inter-connection memory
connection /memory
D2NOW, Flux, Task
Examples SIGMA-1 Many MT. Monsoon DDM-VMc SDA TRIPS, TFlex WaveCache Superscalar DySER

window. The matching hardware can therefore be restrict-
ed to a small number of instructions slots. In addition,
because of the sequential program order, the instructions in
this window are likely to be executable soon.

Once the instructions are executed, they are retired to
permanent state machine (memory) in source program
order (commit in the Figure). Another advantage of these
architectures is their sequential execution of the instruc-

Branch
Predictor

Decode
Reservation Stations

Issue (Dispatch)

ReOrder
IIIlIlIIIl o (KT
Finish

€ 1PIQU] PG JIPI()~JO-JN() mp e JIPI)= U [e

Fig. 4. Out-of-Order execution pipeline.

tions, exploiting the spatial locality of the program. This
locality enables a memory hierarchy to be employed for
storing the instructions and data, potentially executed in
the following cycles and close to the executing processor.

5.1.3 Implementation Examples

Arguably the first Out-of-Order execution machine was the
CDC 6600 (1964), which used a scoreboard to resolve
conflicts. The IBM 360/91 (1966) introduced Tomasulo’s
algorithm, supporting full Out-of-Order execution. In 1990,
the first Out-of-Order microprocessor appeared, the
POWERI1, but its Out-of-Order execution was limited to
floating point instructions.

As mentioned above, Out-of-Order microprocessors
have an instruction window that is restricted to a
sequence of instructions. Thread-level speculation (TLS)
processors may be regarded as an extension of Out-of-
Order hybrid dataflow/von-Neumann architecture that
increases the instruction window and potentially uncover
more ILP. TLS is a technique which empowers the
compiler to identify potential parallel threads, despite
uncertainty as to whether those threads are actually
independent [116]. TLS allows these threads to be
speculatively executed in parallel, while squashing and
re-executing any thread that suffers dependence viola-
tions. The instruction window is thus the addition of the
sequence of instructions of all non-speculative and

YAZDANPANAH ET AL.: HYBRID DATAFLOW/VON-NEUMANN ARCHITECTURES

speculative threads executing in parallel, potentially
larger than the Out-of-Order instruction window.

Thread creation, and the mechanism for buffering
speculative state and tracking data dependences between
speculative threads, are important features of the different
TLS approaches. Some of them are implemented entirely in
software [49], [98], [104], others in hardware [3], [80], [103],
while others are a combination of software and hardware
[16], [37]1, [43], [52], [72], [73], [97], [134]. Two relevant
works are the LRPD test [98] (software-only support) and
the Multiscalar architecture [114]. LRPD test allows the
compiler to parallelize loops without fully disambiguating
all memory references, and applies only to array-based
codes. Disambiguation is performed with the use of
shadow arrays to detect any cross-iteration Read-after-
Write dependence. Multiscalar architecture was the first
complete evaluation of an architecture designed specifi-
cally for supporting TLS. The compiler statically performs
the distribution of the instructions among tasks (potential
speculative threads). Address resolution buffer (ARB) [38],
forward and release bits, and CFG (control flow graph)
information are the mechanisms used for tracking control
and data dependences between speculative threads.

5.2 TRIPS

TRIPS (Tera-op, Reliable, Intelligently adaptive Processing
System) [105], [106] was designed at the University of
Texas in Austin as a grid architecture for implementing the
EDGE (Explicit Data Graph Execution) ISA [15], [105],
[111]. Itis an example of Control Flow/Dataflow class models.

5.2.1 Execution Model

TRIPS combines control flow execution across hyperblocks
of code consisting of up to 128 instructions with a dataflow
execution inside the blocks. In TRIPS, a hyperblock is
equivalent to the block granularity. This scheme enforces
conventional memory semantics across hyperblocks and so
enables imperative code to be executed without major
modifications.

The TRIPS architecture is fundamentally block oriented.
The compiler is responsible for statically scheduling each
block of instructions onto the computational engine such
that inter-instruction dependences are explicit. Therefore,
the compiler role is vital for the final performance of the
application [18]. Each block has a static set of state inputs,
and a potentially variable set of state outputs that depends
upon the exit point from the block. At runtime, the basic
operational flow of the processor includes fetching a block
from memory, loading it into the computational engine,
executing it to completion, committing its results to the
persistent architectural state if necessary, and then pro-
ceeding to the next block.

TRIPS has a block-atomic execution mode which means
a block of instructions must be fetched and executed as
though it were a single unit providing interruptions at
block level. It provides direct communication for instruc-
tions within a block therefore instructions within a block
can directly send values to dependent instructions within
the same block. This behavior allows the architecture to
have very large windows (up to 1024 instructions) that
execute in dataflow order.

1497

TRIPS processor
N|N N[N[N
N N
TRIPS TRIPS
Core N IEE Core
NIN[N|*IN|N
NININ] NN N|NN__.NN NNNI__.NN §
N NI N N| [N N 3
e e) oo o e Q
N N| [N N| [N M|N g
NININ[ININ| [NININ[|N|N]| [N[N|N]|**[N|N =3
NININTLININ
rips | [NMM] MINE - pgpg
Core N N Core
NIN[N]- NN Executlion tile

Register file

@ e

Inst. 1 Operands

Aaffng 1suf

Inst. 0 Operands
\\

\
)

ayoe)) A1Bpu0dag

Execution tiles

(b) (c
Fig. 5. TRIPS architecture (figure based on [105], [106]).

TRIPS provides three modes of execution that enable
polymorphous parallelism: Desktop-morph (D-morph) is
aimed at exploiting instruction level parallelism (ILP),
Thread-level morph (T-morph) for thread level parallelism
(TLP), and Stream-level morph (S-morph) for data level
parallelism (DLP). How TRIPS works in these different
modes is explained in the following subsection.

5.2.2 Architecture Organization

Fig. 5 shows the TRIPS architecture that is a tiled and
distributed. TRIPS processor consists of four cores and a
tiled secondary memory (M tiles in Fig. 5a), surrounded by
a tiled network (N tiles in the Figure) that acts as translation
agents for determining where to route memory system
requests.

Each of the TRIPS cores is implemented using five
unique tiles: one global control tile (GT), 4 x 4 execution
tiles (ET), four register tiles (RT), four data tiles (DT), and
five instruction tiles (IT), as shown Fig. 5b. Each tile only
interacts with its immediate neighbors through micro-
architectural networks (micronets). Micronets have roles
such as transmitting operands between instructions,
distributing instructions from the instruction tiles to
the execution tiles, or communicating control messages
from the program sequencer [107]. The major processor
core micronet is the operand network (OPN), which
handles transport of all data operands along ETs, DTs,
GTs, and RTs.

The GT contains the PC running of the blocks in the
TRIPS core; the instruction cache tag arrays; the I-TLB, and
the next-block predictor. The GT handles TRIPS block
management, including prediction, fetch, dispatch, com-
pletion detection, flush (on mis-predictions and inter-
rupts), and commit. In addition, GT is used to set up the
control register that configures the processor into different

1498

speculation, execution, and threading modes. GT also
maintains the state of all in-flight blocks (maximum 8)
running in the ETs of the TRIPS core. When a block
finishes, the block predictor (tournament local/gshare
predictor-based) provides the predicted address of the
next target block. The block is fetched and loaded into the
reservation stations of ET.

Each ET consists of a fairly standard single-issue
pipeline; a bank of 128 reservation stations (two-operand
instructions); an integer unit; a floating point unit, and an
operand router (shown in Fig. 5c). When a reservation
station contains a valid instruction and a pair of valid
operands, the node can select the instruction for execution.
After execution, the node can forward the result to any of
the operand slots in local or remote reservation stations
within the ALU array (4 x 4 ETs” ALUs). Instructions are
statically placed into the locations of the ET, and executed
in dataflow manner using the direct instruction communi-
cation between intrablock producers and consumers,
specified by the TRIPS ISA.

The Instruction Cache is tiled into five banks (i.e., IT) to
increase the memory bandwidth. Each IT acts as a slave of
the GT which holds the single tag array.

The register file is divided into four 32-register banks
(tiles) that are nodes of the OPN micronet, allowing the
compiler to place critical instructions that read and write
from/to a given bank close to that bank. The registers file
holds a portion of the architectural state, so values passed
between hyperblocks, where direct instruction communi-
cation is not possible, are transmitted through the register
file.

The primary memory is divided into four data tiles (DT).
Each DT holds one L1 data cache bank. It can be accessed
by any ALU through the local grid routing network.

Some of those hardware resources can be configured by
using the GT, to operate differently depending on the
mode: D-morph, T-morph and S-morph. For instance, the
reservation stations can be managed differently depending
on the execution mode. A physical frame is formed by the
reservation stations with the same index across all the
execution tiles (e.g., combining the first slot for all nodes in
the grid forms frame 0). Frames containing one hyperblock
form an architectural frame (A-frame). Thus, direct
instruction communication is only possible within an
A-frame.

In D-morph, all the frame space of a TRIPS core can be
used, since it is a large, distributed, instruction issue
window, by only one thread, allowing it to achieve
maximum ILP. In addition, in order to increase the
potential ILP, the hardware fills empty A-frames with
speculatively mapped hyperblocks, predicting which
hyperblock will be executed next, mapping it to an empty
A-frame, and so on. The A-frames are treated as a circular
buffer where the first is non-speculative, and the rest are
speculative. When the non-speculative A-frame finishes,
the first speculative A-frame becomes the non-speculative
first A-frame of the circular buffer. In T-morph, the frame
space is statically partitioned, so each thread can have its
own frame partition. Within each thread, speculation is
also used but extra prediction registers (e.g., block control
state for each of the hardware threads) are needed. In

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO. 6,

JUNE 2014

S-morph, only one thread can be run and no specula-
tion is performed. Instead, inner loops of a streaming
application are unrolled to fill the reservation stations
within multiple A-frames fused in a super A-frame. In
this case, to reduce the power and instruction-fetch
bandwidth overhead incurred by repeated fetching of the
same code block across inner-loop iterations, the S-morph
employs mapping reuse, in which a block is kept in the
reservation stations and used multiple times. In this case,
the L2 cache memory can be configured to be used as a
stream register file [106], so that direct data array access
and DMA transfer capabilities are allowed. Otherwise, the
secondary memory works as a non-uniform cache access
(NUCA) on-chip memory system.

5.2.3 Implementation Examples

Some studies have been carried out on different aspects of
TRIPS. Sankaralingam et al. [107] describe the TRIPS
control protocols. They detail each of the five types of
reused tiles that compose the processor; the control and
data networks that connect them, and the distributed
micro-architectural protocols that implement instruction
fetch, execution, flush, and commit. They also describe the
physical design issues of implementation the micro-
architecture in a 170 M transistor, 130 nm ASIC prototype
chip composed of two 16-wide issue distributed cores and
a distributed 1 MB NUCA on-chip memory system.

Gratz et al. [48] presented the design, implementation
and evaluation of the TRIPS on-chip network (OCN)
which is a wormhole-routed, 4 x 10 2D mesh network
with four virtual channels. These authors discussed the
tradeoffs made in the design of the OCN; in particular,
why area and complexity were traded off against latency.
A full evaluation of a real TRIPS ASIC prototype and an
EDGE compiler [40] demonstrates that the TRIPS machine
is feasible. This work also shows that TRIPS is compet-
itive with a Pentium 4 system in the number of cycles
needed to execute an application. It is an impressive
outcome for a new machine fully developed in an academic
environment.

TFlex is another architecture based on the EDGE ISA. It
is an implementation of the composable lightweight
processor (CLP) [69], which is proposed to eliminate the
problem of fixed-granularity processors, and consists of
multiple simple, narrow-issue processor cores that can be
aggregated dynamically to form more powerful single-
threaded processors. TFlex adds four capabilities to TRIPS
in a distributed fashion: I-cache management; next-block
prediction; L1 D-cache management, and memory disam-
biguation hardware. Robatmili et al. [100] presented a
hardware implementation of mapping blocks to a distrib-
uted substrate of composable cores for the TFlex.

5.3 WaveScalar

WaveScalar [118], [120], is an example of the Enhanced
Dataflow class. It is a dynamic, general purpose, decentra-
lized superscalar dataflow architecture that is product of
research performed at the University of Washington.
WaveScalar is also the name of the dataflow instruction
set and the execution model.

YAZDANPANAH ET AL.: HYBRID DATAFLOW/VON-NEUMANN ARCHITECTURES

Fig. 6. Dataflow graph and wave-ordered memory (figure based on
[120]).

5.3.1 Execution Model

The WaveScalar execution model is basically a dataflow
model enhanced to support imperative languages. The key
tenet of the Wavescalar execution model is that programs
execute in waves, which are sets of connected instructions of
the program graph. The wave name may come from the
way data flows from the initial instruction to subsequent
instructions in parallel.

Formally, a wave is a connected, directed acyclic portion
of the control flow graph with a single entrance. The
WaveScalar compiler partitions an application into maxi-
mal waves and adds wave management instructions. In
fact, waves are similar to hyperblocks, but they may
contain control flow joins and are generated using loop
unrolling to make them larger (all instructions within a
wave are partially ordered, so waves can not contain
loops). In order to allow instructions to operate on different
dynamic waves, all data elements travel with their wave
number, which increases as the data goes out of a wave and
enters a new one (or the same) using a special waveadvance
instruction.

Therefore, in order to execute an imperative program in
Wavescalar, it is compiled into an special code that
contains the dataflow graph (i.e., the wave) as well as the
memory order. An example of the memory order problem
is illustrated in Fig. 6. It is assumed that the Load
instruction must execute after the Store instruction to
ensure correct execution because the two memory ad-
dresses are identical. In a pure dataflow graph this implicit
dependence between the two instructions (the dashed line
in Fig. 6) can not be expressed.

However, Wavescalar supports a wave-ordered mem-
ory mode in which the compiler annotates memory
access instructions within each wave to encode the
ordering constraints between instructions thereby form-
ing a chain of memory instructions. A memory request
can therefore only be executed if the previous request in
the chain and all memory requests from the previous
wave have already been executed. In order to be
successful, the compiler must ensure that there is a
complete chain of memory operations along every path
through a wave. So, if there are no memory operations in
one of the paths of a branch, a MemNop instruction must be
inserted into that path to maintain the chaining. Further-
more, in order to increase parallelism (i.e., in loops), non-
dependent memory accesses can also be annotated with an
additional ripple number that allow loads to execute in
parallel and even out of order if all previous stores have
finished.

1499

By implementing wave-ordered memory, a total order-
ing of memory instructions can be achieved with little
dynamic overhead. This feature, alongside indirect jumps
for object linking, allows traditional von-Neumann models
of computation to execute just as fast—if not faster—on the
dataflow architecture. Its main advantage is that it is a
dataflow hardware that runs programs written in standard
programming languages, by efficiently providing the
sequential memory semantics required by imperative
languages.

In addition to wave-ordered memory, a second memory
scheme in WaveScalar (standard data firing rule mode)
allows the programmer to omit any unnecessary ordering
and intertwine memory operations into the program graph
by using the standard data firing rule. The unordered
memory scheme introduces a new store instruction, store-
unordered-ack, which returns zero to signify when it has
been completed. Using this value as an input arc to other
instructions enforces memory ordering while providing
greater flexibility to the programmer.

Both wave-ordered and unordered memory can be used
interchangeably within the same program or even within
the same wave, to take advantage of fine-grain (unordered)
and coarse-grain (wave-ordered) threads, resulting in
significant performance improvements [118], [120].

5.3.2 Architecture Organization

To execute WaveScalar programs, a scalable, tile-based
processor architecture called WaveCache has been designed.
Fig. 7 shows the WaveScalar architecture. Each basic
processing element (PE) is a five-stage (Input, Match,
Dispatch, Execute, and Output), dynamically scheduled
execution pipeline. In WaveScalar, pairs of PEs are coupled
into pods sharing ALU results via a common bypass
network. Four pods (8 PEs) are grouped into a domain that
communicate over a set of pipelined buses. Four domains
(32 PEs) form a cluster supported by conventional
memory hierarchy. In order build larger machines, multiple

/
+PodA +— Domain— f 1
1 ~
PE[PE|[PE[PE ¥ PE[PE|[PE[PE
@ D-cae L o
I | / ?; table 12
! = 8
Net ' o
/ S — | 5
D-Cache [———==1|D-Cache / § 5
Store i S
-
PE[PE|[PE[PE][] PE[PE| [PE[PE %
o
PE[PE][PE[PE]| D-Cache | | (o F TpE| [PE[PE . g
L2 L2 L2 N S
\\ .&‘
€ N (S
=] 1
v
S EEyEE
= [}

L2

Fig. 7. WaveScalar architecture (figure based on [118]).

1500

clusters can be connected by a 2D mesh interconnection
network.

Wave-ordered memory lies in the WaveCache’s store
buffers (one per cluster), which are responsible for
implementing the wave-ordered memory interface that
guarantees correct memory ordering. To reduce commu-
nication costs, the PEs are connected through a hierarchical
interconnection infrastructure. WaveScalar’s hierarchical
interconnect plays an important role in overall scalability.
Swanson et al. [119] have studied the area-performance
trade-offs for WaveScalar.

The placement scheme of the instructions of a program
has a compile-time and a runtime component. The
compiler is responsible for grouping instructions into
segments. Those segments have up to 64 instructions. As
a program executes, the WaveCache maps the program
instructions onto its array of PEs, placing a whole segment
of instructions at the same PE. The instructions remain
at their PEs for many invocations, and as the working
set of instructions changes, the WaveCache removes
unused instructions and maps new ones in their place.
The instructions communicate directly with one another
over a scalable, hierarchical on-chip interconnect, obviating
the need for long wires and broadcast communication.

5.3.3 Implementation Examples

The only implementation of WaveScalar is WaveCache.
WaveScalar uses a regular native DEC compiler for
converting source code to Alpha binary, and a binary
translator is used for translating an Alpha binary to a
WaveScalar binary. Petersen et al. [95] present and analyze
three compiler optimizations for the Wavescalar C compil-
er that significantly reduce control overhead with minimal
additional hardware. The basis of the solution lies in
recognizing that overhead instructions are relatively sim-
ple to implement in hardware and can generally execute in
parallel with computation. Hence, the micro-architecture
can be tuned to execute overhead instructions in parallel
with computation instructions. Merzulo et al. [82] proposed
the transactional WaveCache to exploit speculative execu-
tion of memory operations. Pei et al. [93] exploited
speculative multithreading (SpMT) based on WaveScalar.

5.4 Task Superscalar

The Task Superscalar [32], [33] is a task-based dataflow
architecture which generalizes the operational flow of
dynamically scheduled Out-of-Order processors. It was
designed at the Barcelona Supercomputing Center (BSC)
and belongs to the Dataflow/Control Flow class. The Task
Superscalar combines the effectiveness of Out-of-Order
processors in uncovering parallelism together with the task
abstraction, thereby providing a unified management layer
for CMPs, which effectively employs processors as func-
tional units.

5.4.1 Execution Model

The Task Superscalar processor combines dataflow execu-
tion of tasks with control flow execution within the tasks
(i.e., the block granularity is a task). As ILP pipelines
uncover parallelism in a sequential instruction stream,
similarly, the Task Superscalar uncovers task level

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO. 6,

JUNE 2014

] Task Generating Thread |
[}

A
| Pipeline Gateway | Out-of-Order equivalents:
ORT ORT ORT - Register Renaming
. 7 Table
ronten
(Task Window) OvVT OVT OVT - } Physical Register File
(Only meta-data)

TRS TRS TRS

I Reservation Station
TRS TRS

e —

Ready Queue

Backend

Task Scheduler
{ Processor| [Processor| lProcessor Processorl

Fig. 8. Task Superscalar architecture (figure based on [33]).

Worker
Processors

parallelism among tasks generated by a sequential
thread. By utilizing intuitive programmer annotations
of task inputs and outputs, the Task Superscalar pipeline
dynamically detects inter-task data dependencies, identi-
fies task-level parallelism, and executes tasks out-of-order.
This design enables programmers to exploit many-core
systems effectively, while simultaneously simplifying the
programming model.

5.4.2 Architecture Organization

The high-level operational flow of the Task Superscalar is
illustrated in Fig. 8. A task generator thread resolves the
inter-task control path and sends non-speculative tasks to
the pipeline front-end for dependency decoding. The task
window may consist of tens of thousands of tasks, which
enables it to uncover large amounts of parallelism [33]. The
pipeline asynchronously decodes the task dependencies,
generates the task dependency graph (with tasks as nodes
and dependencies between tasks as arcs), and schedules
tasks as they become ready. Finally, ready tasks are sent to
the execution backend, which consists of a task scheduler
and a queuing system.

As shown in Fig. 8, the front-end employs a tiled design,
and is managed by an asynchronous point-to-point proto-
col. The front-end is composed of four module types: the
pipeline gateway; task reservation stations (TRS); object renam-
ing tables (ORT) and object versioning tables (OVT).

The gateway is responsible for controlling the flow of
tasks into the pipeline including by allocating TRS space
for new tasks and distributing tasks to the different
modules, as well as stalling the task generator thread
whenever the pipeline fills. TRSs store the in-flight task
information and track the readiness of task operands. Inter-
TRSs communication is used to register consumers with
producers, and notify consumers when data is ready. The
TRSs store the meta-data of all in-flight tasks.

The ORTs map parameters onto the most recent task by
accessing the same memory object, and thereby detect
object dependencies. Storing all data users (either producer
or consumer), rather than only storing real data for
producers, facilitates TRS consumer chaining. The OVTs

YAZDANPANAH ET AL.: HYBRID DATAFLOW/VON-NEUMANN ARCHITECTURES

track live operand versions, which are created whenever a
new data producer is decoded. Each OVT is associated
with exactly one ORT. The functionality of the OVTs is
similar to a physical register file, but only for maintaining
operand meta-data. Effectively, the OVT manages data
anti- and output-dependencies, either through operand
renaming or by chaining different output operands and
unblocking them in-order by sending a ready message
when the previous version is released.

Fig. 8 also shows the Out-of-Order components equiv-
alent to the Task Superscalar modules. In Out-of-Order
processors, dynamic data dependencies operates by match-
ing each input register of a newly fetched instruction
(consumer) with the most recent instruction that writes data
to that register (producer). The instruction is sent to a
reservation station to wait until all its inputs become
available. Hence, the reservation stations effectively store
the instruction dependency graph, which consists of all in-
flight instructions. In the Task Superscalar, the mechanism
of decoding tasks identifies all possible effects a task may
have on the shared processor state, so producers and
consumers are identified correctly. Moreover, tasks are
decoded in-order to guarantee correct ordering of produ-
cers and consumers, and specifically, that the decoding of a
task producing a datum updates the renaming table, before
any task consuming the datum performs a lookup.

5.4.3 Implementation Examples

Etsion et al. [32] presented a design for a distributed Task
Superscalar pipeline front-end which can be embedded
into virtually any many-core fabric and manages it as a
Task Superscalar multiprocessor. The Task Superscalar
architecture uses the StarSs programming model [10], [94].
This programming model supports Out-of-Order execu-
tion of tasks, by enabling programmers to explicitly expose
task side-effects by using annotating operands of kernel
functions as input, output, or inout. The model can thus
decouple the execution of the thread generating the tasks
from their decoding and execution. At runtime, whenever
the task generator thread reaches a call site at one of the
kernels, the task creation code (injected by a source-to-
source compiler) packs the kernel code pointer and all the
operands, and writes them to the task pipeline.

Yazdanpanah et al. [131] presented an FPGA-based
prototype of the Task Superscalar architecture. The im-
plemented hardware is based on a tiled design that can
operate in parallel and is easily scalable to manage
hundreds of cores in the same way that Out-of-Order
architectures manage functional units. The prototype
operates at near 150 Mhz and maintains up to 1024 in-
flight tasks, managing the data dependencies in few
cycles.

55 DySER

The DySER (Dynamically Specialized Execution Resource)
[44], [45] is an architecture based on dataflow accelerators
belonging to the Control Flow/Dataflow class. It was
designed at the University of Wisconsin-Madison as the
hardware substrate of the dynamically specialized execu-
tion (DySE) model.

1501

| |
FETCH | DECODE | EXECUTE

| I-Cache H Decode
Register
File

I | .
'MEMORY ! WRITEBACK

Execution
Pipeline

D-Cache

doeruy indup YFSAQ

Fig. 9. Processor pipeline with DySER (figure based on [44]).

5.5.1 Execution Model

The DySER integrates dataflow accelerators (DySER block)
into a control flow processor pipeline as functional units.
To achieve this goal, the program is explicitly partitioned
by the compiler (profile-guided to determine common path
trees of control flow) into phases (i.e., program sections).
After that, for each phase, the compiler determines its
kernels and tries to accelerate them by using the DySER
block. The DySER block is basically a large, reconfigurable,
functional unit composed of different arithmetic units
whose connections are reconfigured at runtime, creating
specialized dataflow blocks that can be pipelined. The
model hinges on the assumption that only a few dataflow
blocks are active during a given phase of an application
and they are invoked several times. Thus, setting up the
static routes once amortizes the execution of the DySER
unit over many invocations.

In order to execute each kernel within a phase with a
pure dataflow accelerator, kernels are divided into a
load-back slice and a computation slice. A load-back slice
includes all the memory accesses, while a computation
slice consists of computation operations without memory
accesses that are grouped and executed in the dataflow
accelerator. With this separation between slices, the usual
processor memory disambiguation optimizations can
proceed unhindered. Therefore, in DySER, these compu-
tation slices are the block granularities for the intrablock
scheduling.

To make better use of the reconfigurable unit, when the
control flow execution reaches a program phase, the
DySER block is dynamically configured (specialized for
the phase). Furthermore the execution model allows the
use of multiple DySER blocks, where each block is
configured differently. With multiple DySER blocks, the
next block can be predicted and configured before its
inputs are produced by the processor. The large granularity
of the phases allows easy predictability.

5.5.2 Architecture Organization

Fig. 9 illustrates the DySER attached to a processor
pipeline. The DySER block consists of a circuit-switched
network of heterogeneous functional units. The functional
units (FUs) form the basic computation fabric. Each FU is
connected to four neighbor switches, from where it gets
data and control input values and injects outputs. Each FU
also includes a configuration register that specifies which

1502

function to perform, as well as one data register and one
status register for each input switch. The status registers
indicate the validity of values in the data registers. The data
registers match the word-size of the machine. The switches
(Ss) contain data and status registers, and include a
configuration register which specifies the input to output
port mappings.

DySER blocks are configured by writing into configura-
tion registers at each functional unit and switch. After
configuration, the switches in the DySER block form a
circuit-switched network that creates explicit hardware
paths from inputs to the functional units between func-
tional units, and from functional units to outputs. The
functional units are configured to perform the operation
required to execute the desired dataflow graph. The idea is
that for a given application phase, DySER blocks are
configured once and re-used many times.

The basic execution inside a DySER block is dataflow
driven by values arriving at a functional unit. When the
valid bits for both left and right operands are set, the
functional unit consumes those inputs, and a fixed number
of cycles later produces the output by writing into the data
and status register of the output switch.

All the inputs to a DySER block are fed through a logical
FIFO, which delivers register inputs and memory values.
Each entry specifies a switch and a port. Since a DySER
block uses circuit-switched routing, this effectively decides
where the value will be delivered in the block. Outputs
follow a similar procedure; each port in the output switches
corresponds to one possible DySER block output. Since for
each output port, the DySER produces outputs in order, no
FIFOs are required on the output side. When values arrive
at the output ports, an output interface writes them to the
corresponding register or memory.

DySER can be easily integrated into conventional in-
order and Out-of-Order pipelines as an accelerator.
Integration with an in-order pipeline is simple, and the
DySER block interfaces with the instruction fetch stage for
obtaining the configuration bits, the register file stage and
the memory stage of the pipeline. A state machine must be
added to the instruction cache to read configurations bits
for a DySER block and send them to the input interface of
that DySER block.

DySER integration with an Out-of-Order pipeline
requires more careful design. The processor views DySER
as a functional unit, although the input ports should be
exposed to the issue logic to ensure two send operations are
not executed out-of-order. Since loads can cause cache
misses, when a load executes in the processor, the
corresponding input port is marked as busy in the input
buffers. When the data arrives from the cache, the input
port is marked as ready, which prevents subsequent loads
values from entering the DySER block earlier.

5.6.3 Implementation Examples

Govindaraju et al. [44] implemented the DySER block in
Verilog and synthesized it using Synopsys compiler with a
55 nm standard cell library. These authors developed path-
tree, a program representation for application phases, in
order to find the most frequently executed basic blocks for
mapping on DySER. For evaluating DySER, they devel-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO. 6,

JUNE 2014

oped extensions to the GCC tool-chain which operates on
the SPARC backend and performs path-profiling and
DySER mapping. Benson et al. [11] described the integra-
tion of DySER into a commercial processor by designing an
FPGA prototype based on the OpenSPARC T1 processor
called the OpenSPIySER. Govindaraju et al. [45] studied
challenges for DySER on data parallel workloads.

6 DiscussiON OF RECENT HYBRID MODELS

This section highlights the main features of recent hybrid
architectures, described in Section 5 and in the supplemen-
tary file available online, compares and discusses them, and
shows their common trends. Table 1 introduces the main
features of the architectures sorted according to the year in
which the architecture appeared.

6.1 Main Features

Out-of-Order, DDM, Task Superscalar and DySER are
based on RISC/CISC ISA. In addition, DySER has the ultra-
wide instructions, which are used to run part of the
program in the reconfigurable DySER blocks. SDF is based
on a RISC ISA defined for the execution and synchroniza-
tion processors. SIGMA-1, MT.Monsoon, TRIPS and
WaveScalar are based on dataflow ISAs. SIGMA-1 has
complex machine operations to reduce loop operations
and structure-flow processing overheads.

The main feature of SIGMA-1 is the structure-flow
processing that allows it to perform vector processing
efficiently. In the case of Out-of-Order it is the dataflow
execution of a sequential instruction stream. The Explicit
Token Store (ETS), which eliminates the associative search
in the matching unit, and multithreading are the main
features of MT. Monsoon architecture. The main feature of
DDM is the introduction of the CacheFlow policy, which
implies the execution of a DDM thread (basic block of
instructions—BB) only if its data is already placed in the
cache. Decoupling computation and synchronization, and
non-blocking threads are also the main features of SDF and
DDM. However, computation in the DDM is carried out by
an off-the-shelf processor, while in the SDF it is carried out
by a custom designed processor. Another difference is that
in SDF data is preloaded in registers, while in DDM data is
pre-fetched in the cache. Polymorphism is one of the main
features of TRIPS and provides three modes of execution
for exploiting one of the three types of parallelism ILP, TLP
and DLP. The main feature of the WaveScalar is wave-
ordering execution. In the wave-ordered memory of
WaveScalar, memory instructions are annotated with extra
information that orders them relative to other instructions
of a block. The main feature of Task Superscalar is Out-of-
Order task execution. DySER architecture introduces the
idea of generic dataflow accelerators integrated within a
general purpose processor through ultra-wide instructions.
Those generic dataflow accelerators are dynamically
configured at execution time.

The computational core granularity varies from any
processing element (PE) or core size in the case of DDM,
Task Superscalar and Out-of-Order processors to a small
SDF core. MT. Monsoon uses the original dataflow
Monsoon PE to sequentially execute the thread instructions

YAZDANPANAH ET AL.: HYBRID DATAFLOW/VON-NEUMANN ARCHITECTURES

using the direct token recycling technique. SIGMA-1 uses
two types of operational units: the structure element (SE)
and the processing element (PE). The SEs perform
structure-flow (vector) processing so that data is
referenced in block rather than element-wise. SEs are
tightly coupled to the PEs, that process elements in a
dataflow manner. Each TRIPS processor consists of a tiled
4 x 4 ALU (ET) array (the basic core of TRIPS) with 128
reservation stations per ET. Hyperblocks are statically
placed, at compile time, on the reservation stations of the
ALU array, and dynamically executed by the tiled archi-
tecture. DySER blocks consists on 8 x 8 FUs circuit-
switched networks, that can be reconfigured to use different
accelerators on runtime. The scalability also varies from
more than 1000 PEs in the case of MT. Monsoon down to less
than 10 DySER blocks in the DySER architecture.

6.2 Comparison and Discussion
6.2.1 Enhanced Control Flow Class

Out-of-Order architectures (restricted dataflow architec-
tures) are the main representation of the Enhanced Control
Flow class. Out-of-Order processors support ILP, DLP, and
TLP in the form of dual threaded cores. The number of
instructions of a block (block granularity) is that of the
instruction window, created at runtime. Out-of-Order
processors use cache, memory and registers to communi-
cate data between blocks. Furthermore, Out-of-Order
processors use hybrid control flow/dataflow intrablock
scheduling and the same communication mechanisms as
for inter-block communication.

The main difference between dynamic dataflow archi-
tectures and restricted dataflow pipelines is that the latter
are designed to reconstruct the dataflow graph dynami-
cally from a sequential instruction stream. The success of
such a reconstruction relies on the ability to view a window
of sequential code without control instructions and is
largely attributed to accurate branch prediction and
speculative execution. However, such processors are also
susceptible to the prohibitive costs of branch mis-predic-
tion, which require unrolling the execution of the wrongly
predicted paths. This operation is particularly costly in
deeply pipelined microprocessors. On the other hand, the
restricted size of the instruction window limits the number
of in-flight instructions and thus, to some extent, avoids the
scalability issues associated with token stores in dynamic
dataflow processors.

Nevertheless, the ILP achieved by Out-of-Order micro-
processors is limited by the size of the instruction window
and the amount of parallelism available in the instruction
stream. In this sense, TLS may increase ILP by using
speculative thread execution and a large instruction
window. Indeed, thanks to the fact that each processor
or processing unit only works with a limited part (i.e.,
instructions of thread) of the large instruction window,
the complexity of concurrently monitoring the instruc-
tion issue of all the pending instructions, the data
dependency cross-check complexity among the instruc-
tions, and the overall branch mis-prediction are reduced.
Unlike dataflow models, TLS does not require a large
waiting-matching store, although, it may suffer from

1503

costly check-pointing of memory accesses, squashing
and re-executing threads.

6.2.2 Control Flow/Dataflow Class

The main representative of this class, TRIPS, constitutes a
major effort in rethinking the computation of conventional
codes, while also seeking to overcome the limitations of
architectures based on big cores that is, large communica-
tion delays inside ever-growing control structures. The key
is dataflow execution inside 128-instruction hyperblocks
(intrablock dataflow scheduling), because it allows large
instruction windows to be executed with reasonable
hardware resources. This intrablock scheduling is static
and defined at compile time. TRIPS uses both direct
interconnection and memory for intrablock communica-
tion. For inter-block communication, TRIPS uses registers.
Furthermore, when not enough ILP is available, TRIPS can
use its polymorphous nature to enable different modes of
execution. Therefore, it is also able to exploit DLP or TLP
through loop-unrolling or parallel thread execution. On the
other hand, commercial processors can obtain similar
performance results by exploiting TLP through simulta-
neous multithreading, and DLP through SIMD instructions
[40]. Indeed, small Out-of-Order instruction windows are
sufficient to extract the available ILP efficiently in conven-
tional codes. TRIPS may therefore be regarded as an
efficient architecture that obtains similar results to classical
processors with a different approach.

Another group of processors within this class use a
dataflow accelerator statically defined by the compiler,
inside a classical von-Neumann processor. DySER stands
out from other dataflow accelerators because it is general
purpose and presents some degree of runtime reconfigu-
ration. Designed with power-efficiency in mind, the DySER
execution model is based on the idea that a limited number
of dataflow accelerators are enough to capture highly
reused sections of the applications. TRIPS and DySER
differ in that the former unifies dataflow and von-
Neumann into a single execution model while the latter
essentially uses dataflow to accelerate parts of the code.

DySER architecture can also support ILP, DLP, and TLP
in the form of dual threaded cores. It supports DLP and
TLP based on its incorporated general purpose processor
(GPP) and the DySER blocks integrated with the GPP. For
DySER, a block is a part of the program with as many as
hundreds of GPP ISA instructions. Unlike TRIPS, DySER
uses FIFOs to communicate input data with the DySER
block. DySER provides static dataflow manner with direct
interconnection for intrablock scheduling. Therefore,
DySER requires profiling analysis of applications in
order to pre-define the instructions that are going to be
accelerated with the use of the DySER blocks. Once
those sets of instructions are defined, the DySER execution
model dynamically reconfigures the switched-network of
functional units on the DySER block for each phase of the
application. This dynamic reconfiguration provides area
efficiency (rather than dynamically arbitrated networks)
and programmability, although it requires compiler sup-
port and a phase predictor that tries to reconfigure-the
DySER block before it is needed to hide the reconfiguration
time. The need for profiling, together with the limited

1504

amount of runtime adaptability are the main disadvan-
tages of this subclass. On the other hand, they are able to
provide significant improvements in both performance and
power efficiency over von-Neumann approaches, particu-
larly for computation intensive kernels.

6.2.3 Dataflow/Control Flow Class

In these architectures, blocks are scheduled in a dataflow
manner, while control flow scheduling is used within the
blocks. Models in this class thus tend to provide specific
support only to TLP. In particular, based on dependencies
specified in the program, DDM and Task Superscalar
perform dynamic dataflow inter-block scheduling by using
cache and memory, respectively, for inter-block communi-
cation. SDF and MT. Monsoon perform static dataflow and
both use memory and registers for inter-block communi-
cation. MT. Monsoon uses the V register, within the
computation descriptor, that can be stored in a token of
the pure dataflow Monsoon view. DDM, SDF and MT.
Monsoon blocks are equivalent to a basic block, being up to
128 instructions in the case of a SDF/MT. Monsoon block.
Task Superscalar may have blocks of any size.

This large class can be further divided into two groups
according to the size of the blocks: either small or large. The
sizes of the blocks of DDM, SDF, and MT. Monsoon model
tend to be small, a decision that allows large amount of
parallelism to be discovered and executed but also
increases the cost of the synchronization. In the case of
DDM, this characteristic makes the thread scheduling unit
as important as the workstation duplicating the number of
necessary processing elements. Another key point in this
model is that in order to be efficient, it needs more
information about the program than the classical control
flow model. Programs should thus be annotated either by
the compiler or by the programmer, which increases the
complexity of the tool-chain needed to develop new
applications. Unlike DDM, SDF executes the instructions
within a block in-order, thereby obtaining less ILP but
allowing the execute processor of its architecture to be
simpler and smaller. Another characteristic of the SDF
paradigm is that, although it can benefit from the annotated
code, it can execute the original code as is, automatically
extracting the available parallelism. MT. Monsoon, how-
ever, executes instructions within a block in-order using
the direct token recycling technique. In addition, the thread
extensions included in the MT. Monsoon facilitate the fork,
join, and split phases of block executions.

The Task Superscalar is another instance of Dataflow/
Control Flow class architectures, but in this case the blocks
are designed to be as large as desired. The Task Superscalar
pipeline is designed as a generalization of Out-of-Order
processors to the task-level. Nevertheless, its scalability
goals, which target dynamically, managing very large
graphs consisting of tens of thousands of nodes, require an
alternative design to that of Out-of-Order processors. This
redesign is the result of the Out-of-Order pipeline’s use of
reservation stations and bypass networks, whose operation
is similar to that of associative token stores and are known
not to scale.

The designers of the Task Superscalar pipeline thus
opted for a distributed structure through careful protocol

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO. 6,

JUNE 2014

design that ubiquitously employs explicit data accesses,
practically eliminates the need for associative lookups. The
benefit of this distributed design is that it facilitates high
levels of concurrency in the construction of the dataflow
graph. These levels of concurrency trade off the basic
latency associated with adding a new node to the graph
with overall throughput. Consequently, the rate at which
nodes are added to the graph enables high task dispatch
throughput, which is essential for utilizing large many-core
fabrics.

In addition, the dispatch throughput requirements
imposed on the Task Superscalar pipeline are further
relaxed by the use of tasks, or von-Neumann code
segments, as the basic execution unit. The longer execution
time of tasks compared to that of instructions means that
every dispatch operation occupies an execution unit for a
few dozen microseconds, and thereby further amplifies the
scalability of the design.

The main disadvantage of most of models in this class is
the need for annotating the original codes in order to
extract a significant amount of parallelism from these
codes. In this sense, a trend towards simplifying the
annotations as much as possible can be observed in the
designs of the programming models. Another common
trend in this class is the increase in the number of
processing elements and the size of the blocks.

6.2.4 Enhanced Dataflow Class

SIGMA-1 and WaveScalar are the main examples of the
Enhanced Dataflow class. WaveScalar supports ILP and TLP,
meanwhile SIGMA-1 supports ILP with extensions for
vector processing. Unlike DySER and TRIPS, which need
compiler support, WaveScalar performs dynamic dataflow
intrablock scheduling, since the dependences are detected
in execution time. For SIGMA-1, however, dependencies
are explicit in the program to be executed. SIGMA-1 and
WaveScalar use memory and direct interconnection for
both intrablock and interblock communications. For inter-
block communication, SIGMA-1 and WaveScalar use
memory and direct interconnection. A WaveScalar block
is equivalent to a wave of instructions, although every PE
caches up to 64 instructions, called segments. A SIGMA-1
block is considered as the set of instructions that are
structure-flow processed.

The fact that WaveScalar is the only example of a mainly
dataflow architecture able to execute imperative codes
explains by itself the difficulties of such challenge.
SIGMA-1 is able to execute an adapted Dataflow C
language. SIGMA-1 was enhanced with control flow
features in order to reduce dataflow synchronization
frequency (and overhead) on vector processing. On the
other hand, this uniqueness provides WaveScalar with a
very interesting set of properties. Probably the main
characteristic of this model is that it was designed with
Moore’s Law in mind to make of the most of the increase in
transistor density and count. Therefore, the whole appli-
cation would ideally be mapped to the PEs at the same
time, and in this scenario (i.e., using kernels) it is expected
to clearly outperform Out-of-Order processors. However,
to achieve this goal the processor should have a larger
number of PEs than what has been possible to date. In the

YAZDANPANAH ET AL.: HYBRID DATAFLOW/VON-NEUMANN ARCHITECTURES

meantime, the need for “loading and discarding” instruc-
tions in the PEs throughout the program execution is one of
its main bottlenecks. On the other hand, as technology
evolves, this problem is expected to diminish, and
WaveScalar architecture should be able to provide an
approach capable of benefitting from the increasing
transistor count, while keeping power consumption within
bounds.

6.3 Common Trends

In addition to individual features of the classes discussed
above, they share common properties and advantages.
Moreover, they face similar challenges in their design.
Recent hybrid architectures can handle imperative
programming languages and data structures, as well as
memory operations. This fact makes them stand out
amongst other hybrid dataflow/von-Neumann architec-
tures. Scheduling and memory management are key
challenges in the design of hybrid architectures. One
common theme among these architectures is their attempt
to improve traditional processors by using dataflow
principles at various levels in order to increase the
capability of providing high levels of parallelism and
performance. As the matter of fact, several features of
the dataflow model, such as static single assignment,
register renaming, dynamic scheduling and Out-of-Order
instruction execution, I-structure-like synchronization
and non-blocking threads are used in modern processor
architectures and compiler technology. Moreover, many
studies on hybrid models replace large, centralized
processor cores with many simpler processing elements.
In fact, all of these architectures, except WaveScalar,
SIGMA-1 and MT. Monsoon, are von-Neumann machines,
and rely on a program counter between blocks (inter-block)
or inside blocks (intrablock), with some concepts of
dataflow scheduling. WaveScalar eliminates the program
counter and the register file and, relies completely on the
dataflow program graph, thereby allowing the arcs
between waves to define interactions between them.

The hybrid architectures discussed in this paper were
developed as general purpose processors, although some
of them may have not achieved their goals, as they failed to
deliver the expected performance. Some of the hybrid
architectures have limited scalability (e.g., Out-of-Order
processors). In other cases, performance improvement was
less than expected (e.g., TRIPS), while some of the hybrid
architectures rely on new programming models (e.g., Task
Superscalar and DDM). Most of them are not focused on
power saving, although some dataflow based accelerators
integrated with general purpose processors have been
designed for energy efficiency such as C-Cores, Tartan and
DySER.

7 CONCLUSIONS

This work surveys the recent general-purpose hybrid
dataflow/von-Neumann architectures. To this end, we
review the benefits and drawbacks of the von-Neumann
and the dataflow computing models. We then present the
common characteristics of the different hybrid models
classifying them according to two different taxonomies that

1505

enable a better understanding of their features. After that,
we describe, compare and discuss a representative set of
recent general-purpose hybrid dataflow/von-Neumann
models. Finally, we present an insightful discussion with
the aim of identifying trends in the next generation of
hybrid architectures.

Nowadays, the majority of computer systems are based
on the von-Neumann model. Such processors use a
program counter to sequence the execution of instructions
of a program and global updatable memory. Consequently,
the von-Neumann machines have two fundamental limita-
tions: memory latencies and thread synchronization. The
dataflow model has no program counter or global
updatable memory, so that dataflow architectures have
the potential for exploiting all the parallelism available in
programs. Since instructions in the dataflow models do not
impose any constraints on sequencing except real data
dependencies in programs, the dataflow model is asyn-
chronous and self-scheduled.

However, although the dataflow model has been
investigated since 1970s, no commercially viable global
pure dataflow system has been implemented. The amount
of parallelism discovered by the model becomes an
implementation issue due to token matching and mem-
ory resource limitations. In theory, the dataflow model
offers better performance and power efficiency than the
von-Neumann model. The main reasons are the parallel-
ism inherent to this model and the absence of overhead
on pipeline control structures and temporary state (i.e.,
register file). Nevertheless, the efficient parallel program-
ming of the dataflow architectures is difficult due to the
fact that dataflow and functional languages do not easily
support data structures, and they are not popular. On the
other hand, imperative languages cannot be compiled to
dataflow architectures, mainly because of issues associ-
ated with memory semantics.

Research on modern microprocessor architectures re-
vealed the advantages of dataflow concepts in the use of
instruction level parallelism. Indeed, in order to build
efficient dataflow based machines, the dataflow model has
to exploit some concepts belonging to the von-Neumann
computing model. Similarly, most von-Neumann based
architectures borrow concepts and mechanisms from the
dataflow world to simplify thread synchronization and
tolerate memory latency. As a result, the dataflow and
von-Neumann models are not orthogonal, but are at two
ends of a continuum. Combination or even unification of
von-Neumann and dataflow models is possible, and is
preferred to treating them as two unrelated, orthogonal
computing paradigms. Recent dataflow research incorpo-
rates more explicit notions of state into the architecture,
and von-Neumann models use many dataflow techniques
to improve tolerance to long latency operations of modern
multithreaded systems.

Hybrid architectures exploit the benefits of dataflow
while preserving von-Neumann capabilities and imper-
ative languages, in order to obtain high performance and
low power architectures. Our findings are that most
studies of hybrid designs exploit dataflow concepts in
von-Neumann based architectures, particularly in super-
scalar and VLIW systems, in order to increase the capability

1506 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO.6, JUNE 2014

of providing high levels of parallelism. On the other hand,
some architects of the hybrid models have attempted to
increase the efficiency of dataflow based architectures by
using some ideas from control flow models. Although itis a
promising area, most of the discussed hybrid architectures
are not focused on power saving.

Designing a general-purpose architecture is a common
goal, and all recent hybrid architectures discussed in this
paper were developed as general-purpose processors.
Moreover, it is also clear that modern hybrid architectures
are designed to have the ability of handling imperative
programming languages and data structures as well as
memory organizations. Another observed trend is that
architects of recent hybrid models have attempted to
replace centralized processors by several simpler proces-
sing elements, since scheduling and memory management
pose key challenges in their designs. An increase in the
number of processing elements may be observed, as well as
the fact that all the architectures try to use the dataflow
principles at the level (ILP, DLP or TLP) envisioned by their
designers with the most potential parallelism. At the same
time, the von-Neumann scheduling is maintained at the
other levels to keep the required resources within bounds.

ACKNOWLEDGMENT

This work is supported by the Ministry of Science and
Technology of Spain and the European Union (FEDER
funds) under contract TIN2007-60625, by the Generalitat de
Catalunya (contract 2009-SGR-980), and by the European
FP7 project TERAFLUX id. 249013. The authors wish to
thank Mark Oskin for his insightful comments on earlier
drafts of this document, and the blind reviewers that, with
their comments, have significantly improved the quality of
the paper.

REFERENCES

[1] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz, “APRIL: A
Processor Architecture for Multiprocessing,” in Proc. Int’l Symp.
Comput. Architect., 1990, pp. 104-114.

[2] T. Agerwala and J. Cocke, “’High Performance Reduced Instruc-
tion Set Processors,” IBM T.J. Watson Res. Center, Yorktown
Heights, NY, USA, Tech. Rep. RC12434, 1987.

[3] H. Akkary and M.A. Driscoll, “A Dynamic Multithreading
Processor,” in Proc. ACM/IEEE Int’'l Symp. Microarchitect., 1998,
pp. 226-236.

[4] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield,
and B. Smith, “The Tera Computer System,” in Proc. Int’l Symp.
Supercomput., 1990, pp. 1-6.

[5] A. Vikraman, L. Bic, and T. Ungerer, “Evolution of Dataflow
Computers,” in Advanced Topics in Data-Flow Computing,
J.-L. Gaudiot and L. Bic, Eds. Englewood Cliffs, NJ, USA:
Prentice Hall, 1991.

[6] A. Vikraman and D.E. Culler, ““Dataflow Architectures,” Annu.
Rev. Comput. Sci., vol. 1, pp. 225-253, June 1986.

[7]1 A. Vikraman and R.A. Iannucci, “Two Fundamental Issues in
Multiprocessing,” in Proc. 4th Int'l DFVLR Semin. Found. Eng. Sci.
Parallel Comput. Sci. Eng., 1988, pp. 61-88.

[8] A. Vikraman, R.S. Nikhil, and K.K. Pingali, “’I-Structures: Data
Structures for Parallel Computing,”” ACM Trans. Programm. Lang.
Syst., vol. 11, no. 4, pp. 598-632, Oct. 1989.

[9] P. Barahona and J.R. Gurd, ““Simulated Performance of the
Manchester Multi-Ring Dataflow Machine,” in Proc. Parallel
Comput., 1985, pp. 419-424.

[10] P. Bellens, J. Perez, R. Badia, and J. Labarta, “CellSs: A
Programming Model for the Cell BE Architecture,” in Proc.
ACM/IEEE Supercomput., 2006, pp. 1-5.

[11] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju,
T. Nowatzki, and K. Sankaralingam, ““Design, Integration and
Implementation of the DySER Hardware Accelerator into
OpenSPARC,” in Proc. IEEE Int’l Symp. High Perform. Comput.
Architect., 2012, pp. 1-12.

[12] E. Bloch, “The Engineering Design of the Stretch Computer,” in
Proc. IRE-AIEE-ACM (Eastern) Comput. Conf., 1959, pp. 48-58.

[13] W. Bohm, W. Najjar, B. Shankar, and L. Roh, “An Evaluation of
Coarse Grain Dataflow Code Generation Strategies,” in Proc.
Programm. Models Massively Parallel Comput., 1993, pp. 63-71.

[14] R. Buehrer and K. Ekanadham, “Incorporating Data Flow Ideas
into Von Neumann Processors for Parallel Execution,” IEEE
Trans. Comput., vol. 36, no. 12, pp. 1515-1522, Dec. 1987.

[15] D. Burger, S. Keckler, K. McKinley, M. Dahlin, L.K. John, C. Lin,
C.R. Moore, J. Burrill, R.G. McDonald, and W. Yoder, the TRIPS
Team, ““Scaling to the End of Silicon with EDGE Architectures,”
Computer, vol. 37, no. 7, pp. 44-55, July 2004.

[16] M. Cintra,].F. Martinez, and J. Torrellas, " Architectural Support
for Scalable Speculative Parallelization in Shared-Memory
Multiprocessors,” in Proc. Int’l Symp. Comput. Architect., 2000,
pp. 13-24.

[17] J. Clabes,]J. Friedrich, M. Sweet,]J. DiLullo, S. Chu, D. Plass,
J. Dawson, P. Muench, L. Powell, M. Floyd, B. Sinharoy, M. Lee,
M. Goulet,]J. Wagoner, N. Schwartz, S. Runyon, G. Gorman,
P. Restle, R. Kalla, J. McGill, and S. Dodson, ““Design and
Implementation of the POWERS TM Microprocessor,” in Proc.
Annu. Des. Autom. Conf., 2004, pp. 670-672.

[18] K. Coons, X. Chen, S.K. Kushwaha, D. Burger, and K. McKinley,
"’ A Spatial Path Scheduling Algorithm for EDGE Architectures,”
SIGPLAN Notices, vol. 41, no. 11, pp. 129-140, Nov. 2006.

[19] T. M. Corp., “Connection Machine Model CM-2 Technical
Summary,” Thinking Machines Corp., Cambridge, MA, USA,
Tech. Rep. TR89-1, 1989.

[20] A. Cristal, O.]. Santana, F. Cazorla, M. Galluzzi, T. Ramirez,
M. Pericas, and M. Valero, ““Kilo-Instruction Processors: Over-
coming the Memory Wall,”” IEEE Micro, vol. 25, no. 3, pp. 48-57,
May /June 2005.

[21] D.E. Culler, S.C. Goldstein, K.E. Schauser, and T. Eicken, “TAM:
A Compiler Controlled Threaded Abstract Machine,”” J. Parallel
Distrib. Comput., vol. 18, no. 3, pp. 347-370, July 1993.

[22] D.E. Culler and G.M. Papadopoulos, “The Explicit Token
Store,””]. Parallel Distrib. Comput., vol. 10, no. 4, pp. 289-308,
Dec. 1990.

[23] D.E. Culler, K.E. Schauser, and T. Eicken, “Two Fundamental
Limits on Dataflow Multiprocessing,”” in Proc. IFIP WG 10.3 Conf.
Architect. Compilation Tech. Medium and Fine Grain Parallelism,
1993, pp. 153-164.

[24] ALL. Davis and R. Keller, “Data Flow Program Graphs,”
Computer, vol. 15, no. 2, pp. 26-41, Feb. 1982.

[25] L. Davis, “The Architecture and System Method of DDM1: A
Recursively Structured Data Driven Machine,” in Proc. Int’]
Symp. Comput. Architect., 1978, pp. 210-215.

[26]]J.B. Dennis, “‘First Version of a Data Flow Procedure Language,”
in Proc. Programm. Symp., vol. 19, ser. Lecture Notes in Computer
Science, B. Robinet, Ed., 1974, pp. 362-376, Springer-Verlag:
Berlin, Germany.

[27] J.B. Dennis and G.R. Gao, ““Multithreaded Architectures:
Principles, Projects, and Numbers,” School Comput. Sci.,
McGill Univ., Montreal, QC, Canada, Tech. Rep., 1994.

[28] J.B. Dennis and D.P. Misunas, A Preliminary Architecture for a
Basic Data-Flow Processor,” in Proc. Int’l Symp. Comput. Architect.,
1975, pp. 126-132.

[29] J.B. Dennis, “Data Flow Supercomputers,” Computer, vol. 13,
no. 11, pp. 48-56, Nov. 1980.

[30] J.B. Dennis, “The Varieties of Data Flow Computers,” Adv.
Comput. Architect., pp. 51-60, 1986.

[31] JR. Ellis, “Bulldog: A Compiler for VLIW Architectures
(Parallel Computing, Reduced-Instruction-Set, Trace Schedul-
ing, Scientific),”” Ph.D. dissertation, Yale Univ., New Haven, CT,
USA, 1985.

[32] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R.M. Badia,
E. Ayguade, J. Labarta, and M. Valero, ““Task Superscalar: An
Out-of-Order Task Pipeline,” in Proc. IEEE/ACM Int'l Symp.
Microarchitect., 2010, pp. 89-100.

[33] Y. Etsion, A. Ramirez, R M. Badia, E. Ayguade, J. Labarta, and
M. Valero, “Task Superscalar: Using Processors as Functional
Units,” in Proc. Hot Topics Parallelism, 2010, p. 16.

YAZDANPANAH ET AL.: HYBRID DATAFLOW/VON-NEUMANN ARCHITECTURES

[34] P. Evripidou and J.L. Gaudiot, “A Decoupled Graph/
Computation Data-Driven Architecture with Variable-Resolution
Actors,” in Proc. Int’l Conf. Parallel Process., 1990, pp. 405-414.

[35] P. Evripidou and J.L. Gaudiot, ““The USC Decoupled Multilevel
Dataflow Execution Model,” in Advanced Topics in Data-Flow
Computing, J.-L. Gaudiot and L. Bic, Eds. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1991, pp. 347-379.

[36] J.A. Fisher, “Very Long Instruction Word Architectures and the
ELI-512,” SIGARCH Comput. Architect. News, vol. 11, no. 3,
pp. 140-150, June 1983.

[37] M. Frank, C.A. Moritz, B. Greenwald, S. Amarasinghe, and
A. Agarwal, “SUDS: Primitive Mechanisms for Memory Depen-
dence Speculation,” MIT, Cambridge, MA, USA, Tech. Rep.,
1999.

[38] M. Franklin and G.S. Sohi, ““ARB: A Hardware Mechanism for
Dynamic Reordering of Memory References,” IEEE Trans.
Comput., vol. 45, no. 5, pp. 552-571, May 1996.

[39] J.-L. Gaudiot, T. DeBoni,]. Feo, W. Bohm, W. Najjar, and P. Miller,
“The SISAL Model of Functional Programming and its Imple-
mentation,” in Proc. Int'l Symp. Parallel Algorithms/Architect.
Synth., 1997, pp. 112-123.

[40] M. Gebhart, B.A. Maher, K.E. Coons, J. Diamond, P. Gratz,
M. Marino, N. Ranganathan, B. Robatmili, A. Smith, J. Burrill,
S.W. Keckler, D. Burger, and K.S. McKinley, “An Evaluation of
the TRIPS Computer System,” in Proc. Int’l Conf. Architect.
Support Programm. Lang. Oper. Syst., 2009, pp. 1-12.

[41] M. Gebhart, D.R. Johnson, D. Tarjan, S.W. Keckler, W.]. Dally,
E. Lindholm, and K. Skadron, “’Energy-Efficient Mechanisms for
Managing Thread Context in Throughput Processors,” in Proc.
Int’l Symp. Comput. Architect., 2011, pp. 235-246.

[42] E. Gluck-Hiltrop, M. Ramlow, and U. Schurfeld, “The Stollman
Dataflow Machine,” in Proc. Lect. Notes Comput. Sci., 1989,
pp. 433-457.

[43] S. Gopal, T.N.V. James, E. Smith, and G.S. Sohi, “Speculative
Versioning Cache,” in Proc. Int’l Symp. High Perform. Comput.
Architect., 1998, pp. 195-205.

[44] V. Govindaraju, C. Ho, and K. Sankaralingam, ““Dynamically
Specialized Datapaths for Energy Efficient Computing,” in
Proc. IEEE Int’l Symp. High Perform. Comput. Architect., 2011,
pp. 503-514.

[45] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, ““DySER: Unifying Functionality
and Parallelism Specialization for Energy-Efficient Comput-
ing,”” IEEE Micro, vol. 32, no. 5, pp. 38-51, Sept./Oct. 2012.

[46] V.G. Grafe, G.S. Davidson, J.E. Hoch, and V. Holmes, ““The
Epsilon Dataflow Processor,” in Proc. Int’l Symp. Comput.
Architect., 1989, pp. 36-45.

[47] V.G. Grafe and]. Hoch, “The EPSILON-2 Multiprocessor
System,””]. Parallel Distrib. Comput., vol. 10, no. 4, pp. 309-318,
Dec. 1990.

[48] P. Gratz, C. Kim, R. McDonald, S.W. Keckler, and D. Burger,
“Implementation and Evaluation of On-Chip Network Archi-
tectures,” in Proc. Int’l Conf. Comput. Des., 2006, pp. 477-484.

[49] M. Gupta and R. Nim, ““Techniques for Speculative Run-Time
Parallelization of Loops,”” in Proc. IEEE/ACM Supercomput., 1998,
pp. 1-15.

[50] J.R. Gurd, C.C. Kirkham, and I. Watson, “The Manchester
Prototype Dataflow Computer,” Commun. ACM, vol. 28, no. 1,
pp- 34-52, Jan. 1985.

[51] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov,
B.C. Lee, S. Richardson, C. Kozyrakis, and M. Horowitz,
“Understanding Sources of Inefficiency in General-Purpose
Chips,” in Proc. Int’'l Symp. Comput. Architect., 2010, pp. 37-47.

[52] L. Hammond, M. Willey, and K. Olukotun, “Data Speculation
Support for a Chip Multiprocessor,”” in Proc. Int’'l Conf. Architect.
Support Programm. Lang. Oper. Syst., 1998, pp. 58-69.

[53] M. Herlihy and J.E.B. Moss, ““Transactional Memory: Architec-
tural Support for Lock-Free Data Structures,”” in Proc. Int'l Symp.
Comput. Architect., 1993, pp. 289-300.

[54] J. Hicks, D. Chiou, B.S. Ang, and A. Vikraman, “Performance
Studies of Id on the Monsoon Dataflow System,” |. Parallel
Distrib. Comput., vol. 18, no. 3, pp. 273-300, July 1993.

[55] D. Hillis, “The Connection Machine,” Ph.D. dissertation, Dept.
Elect. Eng. Comput. Sci., MIT, Cambridge, MA, USA, 1988.

[56] S. Hong and H. Kim, ““An Integrated GPU Power and Perfor-
mance Model,” in Proc. Int’l Symp. Comput. Architect., 2010,
pp. 280-289.

1507

[57] HH.J. Hum, O. Maquelin, K.B. Theobald, X. Tian, X. Tang,
G.R. Gao, P. Cupryky, N. Elmasri, L.J. Hendren, A. Jimenez,
S. Krishnany, A. Marquez, S. Merali, S.S. Nemawarkarz,
P. Panangaden, X. Xue, and Y. Zhu, A Design Study of the
EARTH Multiprocessor,” in Proc. Int’l Conf. Parallel Architect.
Compilation Tech., 1995, pp. 59-68.

[58] H.H.J. Hum, O. Maquelin, K. Theobald, X. Tian, G. Gao, and
L. Hendren, “A Study of the EARTH-MANNA Multithreaded
System,” Parallel Programm., vol. 24, no. 4, pp. 319-348, Aug. 1996.

[59] W. Hwu and Y.N. Patt, “"HPSm, A High Performance Restricted
Data Flow Architecture Having Minimal Functionality,”” in Proc.
Int’l Symp. Comput. Architect., 1986, pp. 297-306.

[60] R.A. Tannucci, “Toward a Dataflow/Von Neumann Hybrid
Architecture,” in Proc. Int’l Symp. Comput. Architect., 1988,
pp. 131-140.

[61] R.A. Iannucci, G.R. Gao, R.H. Halstead Jr., and B. Smith,
Multithreaded Computer Architecture: A Summary of the State of
the Art. Boston, MA, USA: Kluwer, 1994.

[62] N. Ito, M. Sato, E. Kuno, and K. Rokusawa, ““The Architecture
and Preliminary Evaluation Results of the Experimental Parallel
Inference Machine PIM-D,” in Proc. Int’l Symp. Comput. Architect.,
1986, pp. 149-156.

[63] H.F.Jordan, ““Performance Measurements on HEP—A Pipelined
MIMD Computer,” in Proc. Int’l Symp. Comput. Architect., 1983,
pp- 207-212.

[64] G. Kahn, ““The Semantics of a Simple Language for Parallel
Programming,” in Proc. IFIP Congr., 1974, vol. 74, pp. 471-475.

[65] RM. Karp and R.E. Miller, “"Properties of a Model for Parallel
Computations: Determinacy, Termination, Queueing,”” SIAM].
Appl. Math., vol. 14, no. 5, pp. 1390-1411, 1966.

[66] K.M. Kavi, B. Buckles, and U. Bhat, ““A Formal Definition of Data
Flow Graph Models,” IEEE Trans. Comput., vol. C-35, no. 11,
pp. 940-948, Nov. 1986.

[67] KM. Kavi, R. Giorgi, and J. Arul, “Scheduled Dataflow:
Execution Paradigm, Architecture, and Performance Evalua-
tion,” IEEE Trans. Comput., vol. 50, no. 8, pp. 834-846, Aug. 2001.

[68] C. Kim and J.L. Gaudiot, Dataflow and Multithreaded Architec-
tures. Hoboken, NJ, USA: Wiley, 1997.

[69] C. Kim, S. Sethumadhavan, M.S. Govindan, N. Ranganathan,
D. Gulati, D. Burger, and S.W. Keckler, “Composable Lightweight
Processors,” in Proc. IEEE/ACM Int’l Symp. Microarchitect., 2007,
pp- 381-394.

[70] M. Kishi, H. Yasuhara, and Y. Kawamura, “DDDP—A Distrib-
uted Data Driven Processor,” in Proc. Int’l Symp. Comput.
Architect., 1983, pp. 236-242.

[71] Y. Kodama, H. Sakane, M. Sato, H. Yamana, S. Sakai, and
Y. Yamaguchi, “The EM-X Parallel Computer: Architecture and
Basic Performance,” in Proc. Int’l Symp. Comput. Architect., 1995,
pp. 14-23.

[72] V. Krishnan and J. Torrellas, “A Chip-Multiprocessor Architec-
ture with Speculative Multithreading,” IEEE Trans. Comput.,
vol. 48, no. 9, pp. 866-880, Sept. 1999.

[73] V. Krishnan and L.J. Torrellas, ““The Need for Fast Communica-
tion in Hardware-Based Speculative Chip Multiprocessors,” in
Proc. Int’l Conf. Parallel Architect. Compilation Tech., 1999, pp. 24-33.

[74] D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C.Q. Zhu,
A. Veidenbaum, J. Konicek, P. Yew, K. Gallivan, W. Jalby,
H. Wijshoff, R. Bramley, U.M. Yang, P. Emrath, D. Padua,
R. Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li, T. Murphy, and
J. Andrews, “The Cedar System and an Initial Performance
Study,” in Proc. Int’l Symp. Comput. Architect., 1993, pp. 213-223.

[75] K. Kurihara, D. Chaiken, and A. Agarwal, ““Latency Tolerance
Through Multithreading in Large-Scale Multiprocessors,” in
Proc. Int’l Symp. Comput. Architect., 1991, pp. 91-101.

[76] C. Kyriacou, P. Evripidou, and P. Trancoso, ““Data-Driven
Multithreading Using Conventional Microprocessors,” IEEE
Trans. Parallel Distrib. Syst., vol. 17, no. 10, pp. 1176-1188,
Oct. 2006.

[77] J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert,
C. Kirkham, B. Noyce, and R. Thomas, SISAL: Streams and
Iteration in a Single Assignment Language. Language Reference
Manual. Livermore, CA, USA: Livermore National Laboratory,
1985.

[78] B. Lee and A. Hurson, “Dataflow Architectures and Multi-
threading,”” Computer, vol. 27, no. 8, pp. 27-39, Aug. 1994.

[79] E.A. Lee and D.G. Messerschmitt, “’Synchronous Data Flow,”
Proc. IEEE, vol. 75, no. 9, pp. 1235-1245, Sept. 1987.

1508

[80] P. Marcuello and A. Gonzalez, “‘Clustered Speculative Multi-
threaded Processors,” in Proc. Int’l Symp. Supercomput., 1999,
pp. 365-372.

[81] D.T. Marr, F. Binns, D.L. Hill, G. Hinton, D.A. Koufaty,
J.LA. Miller, and M. Upton, “Hyper-Threading Technology
Architecture and Microarchitecture,” Intel Technol. |., vol. 6,
no. 1, pp. 1-12, Feb. 2002.

[82] L.A.J. Marzulo, F.M.G. Franca, and V.S. Costa, ““Transactional
WaveCache: Towards Speculative and Out-of-Order Dataflow
Execution of Memory Operations,” in Proc. Int’l Symp. Comput.
Architect. High Perform. Comput., 2008, pp. 183-190.

[83] W.M. Miller, W.A. Najjar, and A.P.W. Bohm, “A Quantitative
Analysis of Locality in Dataflow Programs,” in Proc. Int’l Symp.
Microarchitect., 1991, pp. 12-18.

[84] M. Mishra, T.J. Callahan, T. Chelcea, G. Venkataramani,
S.C. Goldstein, and M. Budiu, “Tartan: Evaluating Spatial
Computation for Whole Program Execution,”” in Proc. Int’l Conf.
Architect. Support Programm. Lang. Oper. Syst., 2006, pp. 163-174.

[85] W.A. Najjar, E.A. Lee, and G.R. Gao, ““Advances in the Dataflow
Computational Model,” Parallel Comput., vol. 25, no. 13/14,
pp- 1907-1929, Dec. 1999.

[86] S.S. Nemawarkar and G.R. Gao, “Measurement and Modeling of
EARTH-MANNA Multithreaded Architecture,”” in Proc. Int’l
Workshop Model., Anal., Simul. Comput. Telecommun. Syst., 1996,
pp- 109-104.

[87] J. Nickolls, I. Buck, M. Garland, and K. Skadron, ““Scalable
Parallel Programming with CUDA,” ACM Queue, vol. 6, no. 2,
pp. 40-53, Mar./Apr. 2008.

[88] R.S. Nikhil, ““Can Dataflow Subsume Von Neumann Comput-
ing?”” in Proc. Int’l Symp. Comput. Architect., 1989, pp. 262-272.

[89] R.S. Nikhil, G.M. Papadopoulos, and A. Vikraman, “*T: A
Multithreaded Massively Parallel Architecture,” in Proc. Int’l
Symp. Comput. Architect., 1992, pp. 156-167.

[90] G.M. Papadopoulos and D.E. Culler, “Monsoon: An Explicit
Token-Store Architecture,” in Proc. Int’l Symp. Comput. Architect.,
1990, pp. 82-91.

[91] G.M. Papadopoulos and K.R. Traub, “Multithreading: A Revi-
sionist View of Dataflow Architectures,” in Proc. Int’l Symp.
Comput. Architect., 1991, pp. 342-351.

[92] Y.N. Patt, WM. Hwu, and M. Shebanow, “HPS, A New
Microarchitecture: Rationale and Introduction,” in Proc. Int’l
Symp. Microarchitect., 1985, pp. 103-108.

[93] S. Pei, B. Wu, M. Du, G. Chen, L.A.J. Marzulo, and F.M.G. Franca,
“SpMT WaveCache: Exploiting Thread-Level Parallelism in
Wavescalar,” in Proc. Congr. Comput. Sci. Inf. Eng., 2009,
pp. 530-535.

[94]]. Perez, R. Badia, and J. Labarta, “A Dependency-Aware Task-
Based Programming Environment for Multi-Core Architectures,”
in Proc. IEEE Int’l Conf. Cluster Comput., 2008, pp. 142-151.

[95] A. Petersen, A. Putnam, M. Mercaldi, A. Schwerin, S. Eggers,
S. Swanson, and M. Oskin, “Reducing Control Overhead in
Dataflow Architectures,” in Proc. Int'l Conf. Parallel Architect.
Compilation Tech., 2006, pp. 182-191.

[96] A. Plas, D. Comte, O. Gelly, and]. Syre, “LAU System
Architecture: A Parallel Data-Driven Processor Based on Single
Assignment,”” in Proc. Int’l Conf. Parallel Process., 1976, pp. 293-302.

[97] M. Prvulovic, M.J. Garzaran, L. Rauchwerger, and J. Torrellas,
“Removing Architectural Bottlenecks to the Scalability of
Speculative Parallelization,” in Proc. Int’l Symp. Comput. Archi-
tect., 2001, pp. 204-215.

[98] L. Rauchwerger and D. Padua, “The LRPD Test: Speculative
Run-Time Parallelization of Loops with Privatization and
Reduction Parallelization,” in Conf. on Programming Language
Design and Implementation, 1995, pp. 218-232.

[99]].E. Requa, “"The Piecewise Data Flow Architecture Control Flow
and Register Management,” in Proc. Int'l Symp. Comput.
Architect., 1983, pp. 84-89.

[100] B. Robatmili, K.E. Coons, D. Burger, and K.S. McKinley,
“Strategies for Mapping Dataflow Blocks to Distributed
Hardware,” in Proc. IEEE/ACM Int’l Symp. Microarchitect., 2008,
pp. 23-34.

[101] B.Robic,].Sile, and T. Ungerer, “‘Beyond Dataflow,”” Comput. Inf.
Technol., vol. 8, no. 2, pp. 89-101, 2000.

[102] L. Roh and W. Najjar, “Design of Storage Hierarchy in Multi-
threaded Architectures,”” in Proc. Int’l Symp. Microarchitect., 1995,
pp- 271-278.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO. 6,

JUNE 2014

[103] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J.E. Smith, “Trace
Processors,” in Proc. IEEE/ACM Int’l Symp. Microarchitect., 1997,
pp- 138-148.

[104] P. Rundberg and P. Stenstrom, “‘Low-Cost Thread-Level Data
Dependence Speculation on Multiprocessors,” in Proc. 4th
Workshop Multithreaded Execution, Architect. Compilation, 2000,
pp- 1-9.

[105] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim,]. Huh,
D. Burger, S.W. Keckler, and C.R. Moore, “Exploiting ILP,
TLP, and DLP with the Polymorphous TRIPS Architecture,” in
Proc. Int’l Symp. Comput. Architect., 2003, pp. 422-433.

[106] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
N. Ranganathan, D. Burger, SW. Keckler, R.G. Mcdonald,
and C.R. Moore, “TRIPS: A Polymorphous Architecture for
Exploiting ILP, TLP, and DLP,”” ACM Trans. Architect. Code
Optim., vol. 1, no. 1, pp. 62-93, Mar. 2004.

[107] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan,
S. Drolia, M.S. Govindan, P. Gratz, D. Gulati, H. Hanson, C. Kim,
H. Liu, N. Ranganathan, S. Sethumadhavan, S. Sharif,
P. Shivakumar, S.W. Keckler, and D. Burger, “Distributed
Microarchitectural Protocols in the TRIPS Prototype Pro-
cessor,”” in Proc. IEEE/ACM Int’'l Symp. Microarchitect., 2006,
pp. 480-491.

[108] T. Sherwood, S. Sair, and B. Calder, ““Predictor-Directed Stream
Buffers,” in Proc. IEEE/ACM Int’l Symp. Microarchitect., 2000,
pp. 42-53.

[109] J. Silc, B. Robic, and T. Ungerer, ““Asynchrony in Parallel
Computing: From Dataflow to Multithreading,” J. Parallel
Distrib. Comput., vol. 1, no. 1, pp. 1-33, 1998.

[110] J. Sile, B. Robic, and T. Ungerer, Processor Architecture: From
Dataflow to Superscalar and Beyond. New York, NY, USA:
Springer-Verlag, 1999.

[111] A.Smith, J. Burrill, J. Gibson, B. Maher, N. Nethercote, B. Yoder,
D.C. Burger, and K.S. McKinley, “Compiling for EDGE
Architectures,” in Proc. Int’l Symp. Code Gen. Optim., 2006,
pp- 185-195.

[112] B.J. Smith, ““Architecture and Applications of the HEP Multi-
processor Computer System,” in Proc. SPIE Real Time Signal
Process. 1V, 1981, pp. 241-248.

[113] J.E. Smith and A.R. Pleszkun, “Implementation of Precise
Interrupts in Pipelined Processors,” in Proc. Int’l Symp. Comput.
Architect., 1998, pp. 291-299.

[114] G.S. Sohi, S.E. Breach, and T.N. Vijaykumar, ““Multiscalar
Processors,” in Proc. Int'l Symp. Comput. Architect., 1995,
pp. 414-425.

[115] V.P.Srini, ““An Architectural Comparison of Dataflow Systems,”’
Computer, vol. 19, no. 3, pp. 68-88, Mar. 1986.

[116]].G. Steffan, “Hardware Support for Thread-Level Speculation,”
Ph.D. dissertation, Dept. Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, 2003.

[117] J.Strohschneider, B. Klauer, S. Zickenheimer, and K. Waldschmidt,
“ADARK: A Fine Grain Dataflow Architecture with Associative
Communication Network,” in Proc. EUROMICRO Conf., 1994,
pp. 445-450.

[118] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin,
“WaveScalar,” in Proc. Int'l Symp. Microarchitect., 2003,
pp- 291-302.

[119] S.Swanson, A. Putham, M.M. Mercaldi, K. Michelson, A. Petersen,
A. Schwerin, M. Oskin, and S.J. Eggers, ““Area-Performance
Trade-Offs in Tiled Dataflow Architectures,” in Proc. Int’l Symp.
Comput. Architect., 2006, pp. 314-326.

[120] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam,
K. Michelson, M. Oskin, and S. Eggers, “The WaveScalar
Architecture,”” ACM Trans. Comput. Syst., vol. 25,no. 2, pp. 4:1-4:54,
May 2007.

[121] K.B. Theobald, “EARTH: An Efficient Architecture for Running
Threads,” Ph.D. dissertation, McGill Univ., Montreal, Quebec,
CA, 1999.

[122] X.-M. Tian, S. Nemawarkar, G.R. Gao, H. Hum, O. Maquelin,
A.Sodan, and K. Theobald, “’Quantitive Studies of Data-Locality
Sensitivity on the EARTH Multithreaded Architecture: Prelim-
inary Results,” in Proc. Int’l Conf. High-Perform. Comput., 1996,
pp. 362-367.

[123] P. Treleaven, R. Hopkins, and P. Rautenbach, “Combining Data
Flow and Control Flow Computing,” Comput. |., vol. 25, no. 2,
pp. 207-217, 1982.

YAZDANPANAH ET AL.: HYBRID DATAFLOW/VON-NEUMANN ARCHITECTURES

[124] D.M. Tullsen, S.J. Eggers, and H.M. Levy, “‘Simultaneous
Multithreading: Maximizing On-Chip Parallelism,” in Proc.
Int’l Symp. Comput. Architect., 1995, pp. 392-403.

[125] R. Vedder and D. Finn, ““The Hughes Data Flow Multiprocessor:
Architecture for Efficient Signal and Data Processing,”” in Proc.
Int’l Symp. Comput. Architect., 1985, pp. 324-332.

[126] A.H. Veen, “Dataflow Machine Architecture,”” ACM Comput.
Surveys, vol. 18, no. 4, pp. 365-396, Dec. 1986.

[127] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M.B. Taylor, ““Conservation
Cores: Reducing the Energy of Mature Computations,” in Proc.
Int’l Conf. Architect. Support Programm. Lang. Oper. Syst., 2010,
pp. 205-218.

[128] J. von Neumann, ““First Draft of a Report on the EDVAC,” U.S.
Army Ordnance Dept. Univ. Pennsylvania Moore, School Elect.
Eng., Philadelphia, PA, USA, Tech. Rep., 1945.

[129] W.-D. Weber and A. Gupta, “’Exploring the Benefits of Multiple
Hardware Contexts in a Multiprocessor Architecture: Prelim-
inary Results,” in Proc. Int’l Symp. Comput. Architect., 1989,
pp. 273-280.

[130] W. Yamamoto, M.]. Serrano, A.R. Talcott, R.C. Wood, and
M. Nemirovsky, ‘“Performance Estimation of Multistreamed,
Supersealar Processors,” in Proc. Hawaii Int’l Conf. Syst. Sci., 1994,
pp. 195-204.

[131] F. Yazdanpanah, D. Jimenez-Gonzalez, C. Alvarez-Martinez,
Y. Etsion, and R.M. Badia, “FPGA-Based Prototype of the Task
Superscalar Architecture,” in Proc. HIPEAC Workshop Reconfi-
gurable Comput., 2013, pp. 1-10.

[132] T. Yuba, K. Hiraki, T. Shimada, S. Sekiguchi, and K. Nishida,
“The SIGMA-1 Dataflow Computer,” in Proc. Comput. Conf.
Explor. Technol., Today Tomorrow, 1987, pp. 578-585.

[133] E.Zehender and T. Ungerer, “The ASTOR Architecture,” in Proc.
Int’l Conf. Distrib. Comput. Syst., 1987, pp. 424-430.

[134] Y. Zhang, L. Rauchwerger, and J. Torrellas, “Hardware for
Speculative Parallelization of Partially-Parallel Loops in DSM
Multiprocessors,” in Proc. Int'l Symp. High Perform. Comput.
Architect., 1999, pp. 135-139.

Fahimeh Yazdanpanah received the MSc de-
gree from the University of Isfahan, Isfahan, Iran,
in 2003. She is a PhD student at the Technical
University of Catalunya (UPC), Catalonia, Spain,
and researches at the Barcelona Supercomput-
ing Center (BSC-CNS), Spain. Her research
interests include computer architecture, digital
and hardware design, VHDL, reconfigurable
architecture, and FPGA-based design. She has
been participating in the TERAFLUX European
project.

1509

Carlos Alvarez-Martinez received the MS and
PhD degrees in computer science from the
Technical University of Catalunya (UPC),
Catalonia, Spain, in 1998 and 2007, respectively.
Since 1998, he has been lecturing on computer
design, computer architecture, and open source
software. He has been a tenured Assistant
Professor in the Computer Architecture Depart-
ment at UPC since 2009. His research interests
cover the areas of architectures, runtime systems,
and reconfigurable solutions for high-performance
multiprocessor systems. Dr. Alvarez has coauthored more than 30
publications in international journals and conferences. Currently, he is
advising two PhD students. He has been participating in the Hipeac
Network of Excellence and in the TERAFLUX European project.

Daniel Jimenez-Gonzalez received the MS and
PhD degrees in computer science from the
Technical University of Catalunya (UPC),
Catalonia, Spain, in 1997 and 2004, respectively.
Since 2000, he has been lecturing on computer
design, parallel, and architecture awareness
programming. He has been a Collaborating
Lecturer in the Computer Architecture Depart-
ment at UPC since 2005. His research interests
cover the areas of parallel and architecture
awareness programming for bioinformatics ap-
plications, runtime systems, compilers, and reconfigurable solutions for
high-performance multiprocessor systems. Dr. Jimenez-Gonzalez has
coauthored more than 30 publications in international journals and
conferences. Currently, he is co-advising two PhD students. He has
been participating in the Hipeac Network of Excellence and in the
SARC, ACOTES, TERAFLUX, and PRACE European projects.

Yoav Etsion received the MSc and PhD from the
Hebrew University of Jerusalem, Jerusalem,
Israel, in 2003 and 2009. He is an Assistant
Professor at the Electrical Engineering and
Computer Science departments in Technion-
Israel Institute of Technology, Haifa, Israel. He
was a Senior Researcher at the Barcelona
Supercomputing Center (BSC-CNS) where he
held a Juan de la Cierva Fellowship from the
Ministry of Science and innovation of Spain. His
research interests include computer architec-
ture, HW/SW interoperability, operating systems, and parallel program-
ming models. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

