
NeSC: Self-Virtualizing Nested Storage Controller
Yonatan Gottesman
Electrical Engineering

Technion — Israel Institute of Technology
yoni@tce.technion.ac.il

Yoav Etsion
Electrical Engineering and Computer Science

Technion — Israel Institute of Technology
yetsion@tce.technion.ac.il

Abstract—The emergence of high-speed, multi GB/s storage
devices has shifted the performance bottleneck of storage virtu-
alization to the software layers of the hypervisor. The hypervisor
overheads can be avoided by allowing the virtual machine (VM)
to directly access the storage device (a method known as direct de-
vice assignment), but this method voids all protection guarantees
provided by filesystem permissions, since the device has no notion
of client isolation. Recently, following the introduction of 10Gbs
and higher networking interfaces, the PCIe specification was
extended to include the SR-IOV specification for self-virtualizing
devices, which allows a single physical device to present multiple
virtual interfaces on the PCIe interconnect. Using SR-IOV, a
hypervisor can directly assign a virtual PCIe device interface
to each of its VMs. However, as networking interfaces simply
multiplex packets sent from/to different clients, the specification
does not dictate the semantics of a virtual storage device and
how to maintain data isolation in a self-virtualizing device.

In this paper we present the self-virtualizing, nested storage
controller (NeSC) architecture, which includes a filesystem-
agnostic protection mechanism that enables the physical device to
export files as virtual PCIe storage devices. The protection mech-
anism maps file offsets to physical blocks and thereby offloads
the hypervisor’s storage layer functionality to hardware. Using
NeSC, a hypervisor can securely expose its files as virtual PCIe
devices and directly assign them to VMs. We have prototyped
a 1GB/s NeSC controller using a Virtex-7 FPGA development
board connected to the PCIe interconnect. Our evaluation of
NeSC on a real system shows that NeSC virtual devices enable
VMs to access their data with near-native performance (in terms
of both throughput and latency).

I. INTRODUCTION

The prevalence of machine consolidation through the use of
virtual machines (VMs) necessitates improvements in VM per-
formance. On the architecture side, major processor vendors
have introduced virtualization extensions to their instruction
set architectures [1], [2], [3]. The emergence of high-speed
networking interfaces also requires that VMs be granted direct
access to physical devices, thereby eliminating the costly,
software-based hypervisor device multiplexing.

Enabling untrusted VMs to directly access physical devices,
however, compromises system security. To overcome the fun-
damental security issue, the PCIe specification was extended to
support self-virtualizing devices through the Single-Root I/O
Virtualization (SR-IOV) interface [4]). This method enables
a physical device (physical function in SR-IOV parlance)
to dynamically create virtual instances (virtual functions).
Each virtual instance receives a separate address on the PCIe

interconnect and can, therefore, be exclusively assigned to, and
accessed by, a specific VM. This method thereby distinguishes
between the physical device, managed by the hypervisor, and
its virtual instances used by the VMs. Importantly, it is up to
the physical device to interleave and execute requests issued
to the virtual devices.

Self-virtualizing devices thus delegate the task of multi-
plexing VM requests from the software hypervisor to the
device itself. The multiplexing policy, however, depends on
the inherent semantics of the underlying device and must,
naturally, isolate request streams sent by individual virtual
devices (that represent client VMs). For some devices, such
as networking interfaces, the physical device can simply
interleave the packets sent by its virtual instances (while pro-
tecting the shared link state [5]). However, enforcing isolation
is nontrivial when dealing with storage controllers/devices,
which typically store a filesystem structure maintained by
the hypervisor. The physical storage controller must therefore
enforce the access permissions imposed by the filesystem it
hosts. The introduction of next-generation, commercial PCIe
SSDs that deliver multi-GB/s bandwidth [6], [7]) emphasizes
the need for self-virtualizing storage technology.

In this paper we present NeSC, a self-virtualizing nested
storage controller that enables hypervisors to expose files and
persistent objects1(or sets thereof) as virtual block devices that
can be directly assigned to VMs.

NeSC implements the SR-IOV specification, which allows
it to expose itself through multiple dynamically allocated PCIe
addresses. This enables NeSC to present itself as multiple
virtual storage devices (through the distinct PCIe addresses)
that are directly assigned to VMs. By multiplexing the requests
sent by the VMs to each virtual device, NeSC can enforce the
access permissions set by the hypervisor and prevent VMs
from accessing stored data for which they have no access
permissions.

NeSC enforces isolation by associating each virtual NeSC
device with a table that maps offsets in the virtual device to
blocks on the physical device. This process follows the way
filesystems map file offsets to disk blocks. VMs view virtual
NeSC instances as regular PCIe storage controllers (block
devices). Whenever the hypervisor wishes to grant a VM direct
access to a file, it queries the filesystem for the file’s logical-
to-physical mapping and instantiates a virtual NeSC instance

1We use the terms files and objects interchangeably in this paper.978-1-5090-3508-3/16/$31.00 c© 2016 IEEE
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Fig. 1. IO Virtualization techniques.

associated with the resulting mapping table. Each access by a
VM to its virtual NeSC instance is then transparently mapped
by NeSC to a physical disk block using the mapping table
associated with the virtual device (e.g., the first block on the
virtual device maps to offset zero in the mapped file).

We evaluate the performance benefits of NeSC using a real
working prototype implemented on a Xilinx VC707 FPGA
development board. Our evaluation shows that our NeSC pro-
totype, which provides 800MB/s read bandwidth and almost
1GB/s write bandwidth, delivers 2.5× and 3× better read and
write bandwidth, respectively, compared to a paravirtualized
virtio [8] storage controller (the de facto standard for virtual-
izing storage in Linux hypervisors), and 4× and 6× better read
and write bandwidth, respectively, compared to an emulated
storage controller. We further show that these performance
benefits are limited only by the bandwidth provided by our
academic protoype. We expect that NeSC will greatly benefit
commercial PCIe SSDs capable of delivering multi-GB/s of
bandwidth.

Although this paper focuses on the performance benefits
that NeSC provides for VMs, it is important to note that NeSC
also provides secure and direct storage access for accelerators
connected to the PCIe interconnet (e.g., GPGPUs, FPGAs).
As virtual NeSC instances are directly accessible on the PCIe
interconnect, they can be accessed directly by other PCIe
devices (using direct device DMA), thereby removing the CPU
from the accelerator-storage communication path.

In this paper we make the following contributions:
• We introduce NeSC, a self-virtualizing, nested storage

controller that offloads file mapping and permission check
operations to hardware and provides VMs with direct and
secure storage access without hypervisor mediation.

• We propose a hardware implementation for NeSC, which
is prototyped using a Xilinx VC707 (Virtex-7) FPGA
development board.

• We evaluate the benefit of self-virtualizing storage using
microbenchmarks and complete applications. Our evalu-
ation shows that the NeSC prototype delivers 2.5× and
3× better read and write bandwidth, respectively, than

state-of-the-art software virtual storage.
The rest of this paper is organized as follows: Section II

discusses the performance overheads of storage virtualization,
and Section III discusses related work. We present the NeSC
system design in Section IV and its architecture in Section V.
We then present our evaluation methodology in Section VI,
the evaluation in Section VII, and conclude in Section VIII.

II. ON THE PERFORMANCE OVERHEADS OF STORAGE
VIRTUALIZATION

Hypervisors virtualize local storage resources by mapping
guest storage devices onto files in their local filesystem, in
a method commonly referred to as a nested filesystem [9].
As a result, they replicate the guest operating system’s (OS)
software layers that abstract and secure the storage devices.
Notably, these software layers have been shown to present a
performance bottleneck even when not replicated [10], due
to the rapid increase in storage device bandwidth [6], [7].
Moreover, further performance degradation is caused by the
method by which hypervisors virtualize storage devices and
the resulting communication overheads between the guest
OS and the underlying hypervisor. Consequently, the storage
system is becoming a major bottleneck in modern virtualized
environments. In this section we examine the sources of these
overheads and outline how they can be mediated using a self-
virtualizing storage device.

Prevalent storage devices present the software stack with a
raw array of logical block addresses (LBA), and it is up to
the OS to provide a flexible method to partition the storage
resources into logical objects, or files. In addition, the OS must
enforce security policies to prevent applications from operating
on data they are not allowed to operate on. The main software
layer that provides these functionalities is the filesystem, which
combines both allocation and mapping strategies to construct
logical objects and map them to physical blocks (for brevity,
we focus the discussion on these two functionalities and ignore
the plethora of other goals set by different filesystems). In
addition, the filesystem layer also maintains protection and
access permissions. Besides the filesystem, another common
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Fig. 2. The performance benefit of direct device assignment over virtio for
high-speed storage devices. Fast devices were emulated using an in-memory
disk (ramdisk) whose bandwidth, due to the overheads of the software layers,
peaks at 3.6GB/s.

layer is the block layer, which caches disk blocks and abstracts
the subtleties of different storage devices from the filesystem
layer.

When an application accesses a file, the OS uses the
filesystem layer to check the access permissions and map the
file offset to an LBA on the storage device. It then accesses its
block layer, which retrieves the block either from its caches or
from the physical device. In a VM, this process is replicated
since the storage device viewed by the guest OS is actually a
virtual device that is mapped by the hypervisor to a file on the
host’s storage system. Consequently, the hypervisor invokes
its own filesystem and block layers to retrieve the data to the
guest OS.

Figure 1 illustrates the three most common methods by
which hypervisors virtualize storage devices:

1) Full device emulation [11] (Figure 1a) In this method,
the host emulates a known device that the guest already
has a driver for. The host traps device accesses by the
VM and converts them to operations on real hardware.
The emulated device is represented as a file on the host
filesystem, and whenever the guest tries to access a
virtual LBA on the device, the host converts the virtual
LBA to an offset in the file.

2) Paravirtualization [12], [8] (Figure 1b) This method,
commonly referred to as virtio after its Linux imple-
mentation, eliminates the need for the hypervisor to
emulate a complete physical device and enables the
guest VM to directly request a virtual LBA from the
hypervisor, thereby improving performance. This is the
most common storage virtualization method used in
modern hypervisors.

3) Direct device assignment [13] (Figure 1c) This method
allows the guest VM to directly interact with the physi-
cal device without hypervisor mediation. Consequently,
it delivers the best storage performance to the VM.
However, since storage devices do not enforce isolation
among clients, it does not allow multiple VMs to share
a physical device.

Figure 2 quantifies the potential bandwidth speedup of

Virtual storage device 1 Virtual storage device 2

Physical storage device

Fig. 3. Exporting files as virtual devices using NeSC.

direct device assignment over the common virtio interface for
high-speed storage devices. We have emulated such devices
by throttling the bandwidth of an in-memory storage device
(ramdisk). Notably, due to OS overhead incurred by its soft-
ware layers, the ramdisk bandwidth peaks at 3.6GB/s.

The figure shows the raw write speedups obtained using di-
rect device assignment over virtio for different device speeds,
as observed by a guest VM application. Notably, we see that
compared to the state-of-the-art virtio method, direct device
assignment roughly doubles the storage bandwidth provided
to virtual machines for modern, multi GB/s storage devices.
The reason for these speedups is that as device bandwidth
increases, the software overheads associated with virtualizing
a storage device become a performance bottleneck. Using the
direct device assignment method eliminates both the virtual-
ization overheads as well as the overheads incurred by the
replication of the software layers in the hypervisor and the
guest OS.

The potential performance benefits of direct device assign-
ment motivate the incorporation of protection and isolation
facilities into the storage device. These facilities will enable
multiple guest VMs to share a directly accessed physical
device without compromising data protection.

This paper presents the nested storage controller (NeSC),
which enables multiple VMs to concurrently access files on
the host’s filesystem without compromising storage security
(when NeSC manages a single disk, it can be viewed simply
as a PCIe SSD). Figure 3 illustrates how NeSC provides VMs
with secure access to a shared physical device. NeSC leverages
the SR-IOV features of the PCIe gen3 [4] to export host files
as multiple virtual devices on the PCIe address space. Each
virtual device is associated with a collection of non-contiguous
blocks on the physical device, which represent a file, and is
prevented from accessing other blocks. VMs can therefore
directly access the virtual device and bypass the virtualization
protocol and hypervisor software (notably, NeSC is compatible
with the modern NVMe specification [14]). The rest of this
paper describes the design, architecture, and evaluation of
NeSC.



III. RELATED WORK

NeSC was motivated by the necessity to redesign the
hardware/software storage stack for modern, high-speed, self-
virtualizing storage devices. In this section we examine related
research efforts.

The Moneta [15] and Moneta-D [16] projects both try to
optimize the I/O stack by introducing new hardware/software
interfaces. The Moneta project introduces a storage array
architecture for high-speed non-volatile memories. Moneta-
D extends the design to allow applications to directly access
storage by introducing per-block capabilities [17]. When an
application directly accesses the storage, permission checks are
done by the hardware to preserve protection policies dictated
by the OS. The design, however, requires applications to use
a user space library to map file offsets to the physical blocks
on the device. In contrast, NeSC enforces file protection by
delegating file mapping to the device level rather than to the
application level.

Willow [18] examines offloading computation to small
storage processing units (SPU) that reside on the SSD. The
SPUs run a small OS (SPU-OS) that enforces data protection.
Willow implements a custom software protocol that maintains
file mapping coherence between the main OS and the SPU-OS
instances.

NVMe [14] is a new protocol for accessing high-speed
storage devices. Typically implemented over PCIe, NVMe
defines an abstract concept of address spaces through which
applications and VMs can access subsets of the target storage
device. The protocol, however, does not specify how address
spaces are defined, how they are maintained, and what they
represent. NeSC therefore complements the abstract NVMe
address spaces and enables the protocol to support protected,
self-virtualizing storage devices.

MultiLanes [19] mediates the contention on a hypervisor’s
shared I/O stack by presenting each VM with a dedicated,
virtualized I/O stack. Nevertheless, the underlying device ac-
cesses issued by each VM must still be mediated, in software,
by the hypervisor.

Peter et al. [20] argue that the SR-IOV concept should
be extended and that the operating system should serve as
a system’s control plain and enable applications to directly
access devices. The NeSC storage controller is in line with
their view.

Finally, FlashMap [21] provides a unified translation layer
for main memory and SSDs, which enables applications
to map files to their memory address space. Specifically,
FlashMap unifies three orthogonal translation layers used in
such scenarios: the page tables, the OS file mapping, and
the flash translation layer. FlashMap, however, only supports
memory-mapped SSD content, and it does not address how the
unified translation would support virtualized environments.

In summary, NeSC’s self-virtualizing design is unique in
that it delegates all protection checks and filesystem mappings
to the hardware. Furthermore, its filesystem-agnostic design
preserves the hypervisor’s flexibility to select and manage the
host filesystem.

IV. DESIGN

In this section we overview the NeSC design principles and
basic functionality.

A. The NeSC interface

NeSC implements the SR-IOV specification [4], which
allows an I/O device to be shared by multiple VMs. An
SR-IOV device can present itself as multiple standard PCIe
devices. A single physical function (PF) represents the main
devices with all its features. Additionally, the device may
dynamically expose multiple virtual functions (VFs), which
typically present to clients (e.g., VMs, accelerators) a subset
of features supported by the main device. Importantly, each
VF has a unique PCIe address and can receive direct I/O
requests from its associated client without hypervisor or OS in-
tervention. Since both the PF and the VFs effectively represent
different facets of a single physical device, which multiplexes
and processes the communication of all the clients with the
different facets, it is thus up to the physical device to determine
the behavior of the device exported as the PF and that of a
virtual device exposed as a VF.

The physical function: The NeSC PF exports a full-featured
PCIe storage controller. It is mapped only to the hypervisor
address space and allows it to fully manage the physical
device. The hypervisor uses the PF interface to (1) manage the
underlying NeSC storage and thereby its filesystem; and (2)
manage the NeSC virtual devices by controlling the creation
and deletion of VFs and the subsets of storage they are allowed
to access.

Virtual functions: Each NeSC VF is viewed by the system
as a PCIe device that provides a complete block device inter-
face. A VF can thus be mapped to a VM’s address space and
viewed by it as a fully fledged storage device, which can be
programmed by the VM’s driver to issue read/write commands
to the storage device. Technically, the only difference between
the PF and VF interface is that a VF is not allowed to create
nested VFs (although, in principle, such a mechanism can be
implemented to support nested virtualization).

The PF and VF differ semantically in that VFs can only
access the subset of the storage they are associated with. When
a VM accesses a VF, all of its read/write block requests are
translated to the subset of blocks assigned to that VM as
described below.

B. Virtual-to-physical block mapping

Decoupling the PF from the VFs enables the hypervisor to
logically manage the physical device with its own filesystem,
and expose files (or collections thereof) to client VMs as raw
virtual devices through VFs (as illustrated in Figure 3). Each
VF is thus associated with a mapping table that translates client
requests to physical blocks. Specifically, since client VMs view
VFs as regular block devices, they send requests pertaining to
LBAs on the virtual device. NeSC refers to client LBAs as
virtual LBAs (vLBA), to host LBAs as physical LBAs (pBLA),
and the translation process is referred to as a vLBA-to-pLBA
translation.
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The vLBA-to-pLBA mapping is performed using per-VF
mapping tables. The mapping tables are designed as ex-
tent trees, a method inspired by modern UNIX filesystems.
Traditionally, UNIX-derived filesystems used per-file direct
and indirect block mapping tables to map offsets in a file
to their corresponding data block. But tracking individual
blocks incurs large spatial and latency overheads when dealing
with large files. Modern UNIX filesystems (e.g., ext4 [22],
btrfs [23], xfs [24]) therefore group contiguous physical blocks
into extents and construct extent trees, which consist of vari-
ants of B-trees [25], to spatially map offsets in the device to
extents. Each file is associated with an extent tree (pointed to
by the file’s inode) that maps file offsets to physical blocks.

The key benefit of extent trees is that their depth is not fixed
but rather depends on the mapping itself. In ext4, for example,
a 100MB file can be allocated using a single extent, thereby
obviating the need to create the indirect mappings for each
individual block. Extents thus improve performance and also
reduce management overheads.

Figure 4a illustrates the NeSC VF extent tree (which re-
sembles the ext4 extent tree format). Each node in the tree
comprises either a group of node pointers, which point to the
next level of nodes, or a group of extent pointers, which are
the tree leaves that point to the physical location of the extents.
The header of each node indicates whether it contains node
indices or extent pointers.

Figure 4b illustrates the content of the entries in each
type of node in the extent tree. Each extent pointer entry
consists of the first logical block it represents, a pointer to
the first physical block of its extent, and the size of the
extent. Each node pointer entry comprises the first logical
block it represents, the number of (non-contiguous) logical
blocks it covers, and a pointer to its array of child nodes. If
memory becomes tight, the hypervisor can prune parts of the
extent tree and mark the pruned sections by storing NULL
in their respective Next Node Pointer. When NeSC needs to
access a pruned subtree, it interrupts the host to regenerate the
mappings.

Each NeSC’s VF is associated with an extent tree, which is
stored in host memory, and the NeSC architecture (described
in Section V) stores the pointer to the root of each VF’s extent
tree. Whenever a VF is accessed, its extent tree is traversed
using DMA accesses from the device to host memory. To
mitigate the DMA latency, extents are cached on the NeSC
device (more on this in Section V).

Importantly, this use of software-defined, hardware-
traversed per-VF extent trees eliminates the need to enforce
protection and isolation in the hypervisor software layers,
as discussed in Section II. Instead, this task is offloaded to
hardware and thereby mitigates one of the key performance
bottlenecks of virtualized storage [9].

The per-VF extent tree model also enables the hypervisor
to decouple the virtual device’s size from its physical layout.
This allows the hypervisor to initialize virtual devices whose
logical size is larger than their allocated physical space, and
to allocate further physical space when needed. This enables
the hypervisor to maintain a compact physical representation
of the stored data.

Finally, the NeSC design also enables multiple VFs to share
an extent tree and thereby files. Nevertheless, NeSC only
guarantees the consistency of the extent tree for shared files;
it is up to the client VMs to address data synchronization and
consistency issues.

C. Operational flow

Creating a new virtual disk: When creating a new virtual
device, the hypervisor first creates the extent tree that will
map the virtual device to physical blocks. Since most modern
filesystems use extent trees to map files to their physical
layout, this stage typically consists of translating the filesys-
tem’s own per-file extent tree to the NeSC tree format. The
hypervisor does not fully preallocate all the physical blocks
needed for the new virtual device (i.e., lazy allocation).

The hypervisor then creates a new NeSC VF through the
PF. It initializes the VF configuration registers (e.g., the size
of the virtual device), writes the extent tree to memory and
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sets the VF’s base extent tree configuration register to point
to the in-memory extent tree.

Following the two previous steps, the VF is ready and the
virtual device is configured. The hypervisor then connects the
VM to the new virtual machine, either by executing a new
machine or by notifying an existing machine that a new device
is available for its use (virtual device hotplug).

Read flow: The read flow is depicted in Figure 5a. The
VM’s NeSC block driver is attached to the VF and can issue
read requests to the device. Large requests are broken down by
the driver to scatter-gather lists of smaller chunks. Our NeSC
implementation operates at 1KB block granularity (which is,
for example, the smallest block size supported by ext4), so the
chunks sent by the block driver are broken down by NeSC
to 1KB blocks. The device then translates each 1024 byte
request address through the extent tree mappings of that virtual
function and creates a new queue of physical requests to read
from physical storage and DMA back to the host memory.

The translation of a vLBA to a pLBA can fail in one of two
cases: 1) The pLBA was never allocated due to lazy allocation.
Following the POSIX standard, which dictates that unmapped
areas inside a file (holes in the file) should read as zeros, NeSC
transparently DMAs zeros to the destination buffer in host
memory; or 2) The pLBA was allocated, but its mapping was
pruned from the extent tree due to memory pressure. NeSC
identifies this case when it encounters a NULL node pointer
when traversing the tree, and resolves it by sending an interrupt

to the host and requesting that the hypervisor regenerates the
pruned mappings (e.g., by re-reading the filesystem-specific
mappings from disk).

Write flow: The write flow is shown in Figure 5b. Similar
to read requests, write requests are broken down by NeSC to
1KB chunks.

For each chunk, the device tries to perform vLBA-to-pLBA
mapping using the VF’s extent tree. If the translation succeeds,
the data is written to the persistent physical storage.

Just like in the read case, the translation can fail due to unal-
located blocks or pruned tree nodes. Both cases require NeSC
to interrupt the hypervisor, which will request the filesystem
for the mappings and rebuild the tree. The filesystem might
have to allocate new blocks if this is the first time the vLBA is
accessed. Once the hypervisor finishes handling the request,
it signals NeSC to restart the extent tree lookup, which is
now guaranteed to succeed. If, however, the hypervisor cannot
allocate more space for the VF (not shown in Figure 5b) due
to a lack of physical storage or exhausted storage quotas, it
signals an error to the PF which, in turn, triggers the VF to
send a write failure interrupt to the requesting VM (we note
that it is possible to optimize this process by delegating the
interrupt directly to the VM [26]).

D. Other design issues

Nested filesystems: A client VM will often manage its own
filesystem inside its nested storage device. Given that a virtual



device is stored as a file in the hypervisor’s filesystem, this use
case is commonly referred to as a nested filesystem.

Modern filesystems frequently use journaling for improved
fault tolerance. This causes a well-known inefficiency in nested
filesystems known as nested journaling [9]. The inefficiency
is caused as both the internal and external filesystems re-
dundantly log the internal filesystem’s data and meta-data
updates. The common solution to this inefficiency is to tune
the hypervisor’s filesystem to only log meta-data changes for
the file at hand and let the VM handle its internal filesystem’s
data integrity independently.

NeSC naturally lends itself to this common solution. Since
NeSC VM clients directly access their data, the hypervisor’s
filesystem is not aware of the internal filesystem updates,
whose integrity it handled by the VM, and only tracks its
own meta-data updates.

Direct storage accesses from accelerators: A straightfor-
ward extension of NeSC is to export data to accelerators in the
system. Traditionally, when an accelerator on the system needs
to access storage, it must use the host OS as an intermediary
and thereby waste CPU cycles and energy.

While not implemented in the prototype, we note that NeSC
can be easily extended to enable direct accelerator-storage
communications. This can be easily achieved by modifying
the VF request-response interface, which is suitable for block
devices, to a direct device-to-device DMA interface (in which
offset 0 in the device matches offset 0 in the file, and so on).

This simple change to the VF interface enables accelerators
to directly access storage using DMA without interrupting the
main processor and the OS. Such a design corresponds with
the data-centric server concept presented by Ahn et al. [27].

Quality of Service (QoS): Modern hypervisors support
different QoS policies for each emulated disk image. Because
the hypervisor mediates every disk access, it can easily enforce
the QoS policy for each device. NeSC can be extended to
enforce the hypervisor’s QoS policy by modifying its DMA
engine to support different priorities for each VF. Similar
techniques are widely used by NICs that support SR-IOV.

Unified buffer cache: Different VMs often share storage
blocks with one another. To minimize buffer duplication across
VMs’ buffer caches, common hypervisors use their own buffer
cache as a unified buffer cache by forcing VMs to minimize
their individual buffer caches (specifically, balloon drivers in
each VM reclaim physical pages; the resulting memory pres-
sure forces the VM to free buffered pages). As NeSC enables
VMs to directly access storage, it prevents the hypervisor from
maintaining a unified buffer cache. Instead, NeSC relies on
memory deduplication to eliminate buffer duplication across
guest VMs’. Notably, memory deduplication is supported by
all modern hypervisors (e.g., TPS in VMware, KSM in kvm
and "Memory CoW" in Xen).

V. ARCHITECTURE

As an SR-IOV device, NeSC presents itself as multiple de-
vices on the PCIe interconnect. The architecture must maintain
a separate context for each PCIe device (PF and VFs), but a
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Fig. 6. An outline of the NeSC architecture. The PF and VFs each have
a set of control registers and request/response queues. The core NeSC
microarchitecture multiplexes the activity of the individual VFs.

key tenet of the microarchitecture is multiplexing traffic from
the different devices.

Figure 6 outlines the core design of the NeSC architecture.
For each function (PF and VF alike), NeSC maintains a set
of control registers and request/response queues. All requests
sent to the different functions are multiplexed through the
address translation and request service units. Similarly, all
traffic between the host and the device is multiplexed through
a single DMA engine.

Every request received by the NeSC device is labeled with
the ID of the NeSC function to which it was sent. This enables
the multiplexed facilities to associate requests with a specific
function (according to the SR-IOV specification, the ID of the
PF is 0). PCIe addressing is hierarchical, and each entity on
the interconnect is identified by a triplet: the PCIe bus ID,
the ID of the device on the bus (device ID), and the function
inside the device (function ID). In PCIe parlance, addresses are
referred to as bus:device:function triplets or BDF for short.
Since PCIe addresses of the different NeSC functions share
the same bus and device IDs, associating each request with its
originating function ID is sufficient for accurate bookkeeping.
The BDF triplet is originated by the PCIe interface of NeSC
and is unforgeable by a virtual machine.

Control registers

Communication with a PCIe device is handled through base
address registers (BARs). BARs have a predetermined size,
and are mapped to the system’s logical address space when
the PCIe interconnect is scanned (typically by the system’s
firmware). Since each BAR is assigned a logical bus address,
the hypervisor can map the BARs directly to clients’ virtual
address spaces, and to its own.

Although NeSC assigns a BAR for each function (physical
and virtual alike), the control registers for all functions can be
mapped to a single physical structure inside the device. The
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Fig. 7. High-level view of the NeSC virtual function multiplexer design. The microarchitecture multiplexes requests from the different virtual functions.

PCIe specifications make it possible to define control registers
as offsets into a device’s BAR. When a certain offset inside
a BAR is read from or written to, the PCIe device internally
translates the offset to an address in a shared structure. Since
our prototype can support up to 64 VFs (and the additional
PF), the NeSC prototype uses a single 130KB SRAM array
(2048B per function).

The set of VF-specific control registers are listed as follows
(the PCIe specification mandates a number of additional
standard control registers, omitted for brevity).

1) ExtentTreeRoot (8B) This register contains the base
address (in host memory) of the root node of the extent
tree associated with a VF. It is set by the hypervisor
when a new VF is created.

2) MissAddress, MissSize (8B, 4B) These two registers
are set by NeSC when a translation of a write request
sent to the VF misses in the extent tree. After setting
these values, NeSC sends an interrupt to the hypervisor
so it will allocate additional physical space to the file
associated with the VF.

3) RewalkTree (4B) This register is used by the hyper-
visor to signal NeSC that the physical storage allocation
has succeeded. When the hypervisor writes a value of 1
to a VF’s RewalkTree register, NeSC reissues the stalled
write requests to the extent tree walk unit.

In addition to the NeSC-specific control registers listed
above, each VF also exposes a set of registers for controlling
a DMA ring buffer [28], which is the de facto standard for
communicating with devices. We omit those for brevity.

A. The NeSC virtual function multiplexer

In this section we describe the implementation of the NeSC
virtual function multiplexer, which is depicted in Figure 7.
The main role of the virtual function multiplexer is to process
access requests from the multiple VFs, translate their addresses
to physical storage blocks, and respond to the client VM.
Access requests are sent by the VM’s block driver. The driver
typically breaks large requests into a sequence of smaller 4KB

requests that match the system’s page size. Requests sent from
different client VMs are stored in per-client request queues.
NeSC dequeues client requests in a round-robin manner in
order to prevent client starvation (a full study of client schedul-
ing algorithms and different quality-of-service guarantees is
beyond the scope of this paper).

Client requests address their target storage blocks using
vLBAs, or logical block addresses as viewed by the virtual
device. These addresses must be translated to pLBAs using
the per-VF extent tree. The client requests are therefore pushed
to a shared vLBA queue for translation, along with the root
pointer to their VF’s extent tree.

NeSC includes a dedicated translation unit (discussed be-
low) that dequeues pending requests from the vLBA queue,
translates their vLBAs to pLBAs and pushes the translated
requests to a pLBA queue. A data transfer unit then manages
direct accesses to the persistent storage device. For write
requests, the data transfer unit simply writes the data to storage
and generates an acknowledge response message that will be
sent to the client. For read requests, the data transfer unit
reads the target data from the physical storage and prepares a
response message. The message is then DMAed to the client
VM’s destination buffer in host memory.

While we only discuss the processing of client VM requests,
NeSC also includes a dedicated out-of-band (OOB) channel
to process hypervisor requests sent through the PF. The OOB
channel is needed so that VF write requests whose translation
is blocked will not block PF requests. The addition of the
OOB is, however, simple since PF requests use pLBAs and
need not be translated. The OOB channel, therefore, bypasses
the NeSC flow preceding the pLBA queue and does not affect
the the address translation unit.

B. The vLBA-to-pLBA translation unit

The translation unit translates the vLBA addresses used in
client VM requests to pLBA addresses, which can be used
to access the physical storage. The translation uses the extent
tree associated with a request’s originating VF.
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Figure 8 illustrates the translation unit and its components.
These include a block walk unit that traverses the extent
tree and a block translation lookaside buffer (BTLB) that
caches recent vLBA mappings. Furthermore, the unit may
send interrupts to the hypervisor when a mapping is not found
(e.g., when a client VM writes to an unallocated portion of
its virtual device), and it is charged with observing the VFs’
RewalkTree registers through which the hypervisor signals that
the mapping was fixed and the extent tree can be re-examined.

Block walk unit: This unit executes the block walk proce-
dure by traversing the extent tree. When a client VM request
arrives at the unit, the root node of the associated extent tree
is DMAed and the unit tries to match the vLBA to the offsets
listed in the root node’s entries (be they node pointers or extent
pointers). The matched entry is used as the next node in the
traversal, and the process continues recursively until an extent
is matched. For read operations, an unmatched vLBA means
that the client VM is trying to read from an unmapped file
offset (a hole in the file) and zeros must be returned. If a
match is not found on a write operation, the unit sets the VF’s
MissAddress and MissSize control registers, interrupts the host,
and waits until the hypervisor signals that the missing blocks
were allocated (using the RewalkTree control register).

The block walk unit is designed for throughput. Since
the main performance bottleneck of the unit is the DMA
transaction of the next level in the tree, the unit can overlap
two translation processes to (almost) hide the DMA latency.

Block Translation lookaside buffer (BTLB): Given that stor-
age access exhibits spatial locality, and extents typically span
more than one block, the translation unit maintains a small
cache of the last 8 extents used in translation. Specifically,
this enables the BTLB to maintain at least the last mapping
for each of the last 8 VFs it serviced.

Before the translation unit begins the block walk, it checks
the BTLB to see whether the currently translated vLBA
matches one of the extents in the BTLB. If a match is found,
the unit skips the block walk and creates a new pLBA for the
output queue. On a miss, the vLBA will be passed to the block
walk unit and, after the translation completes, the mapping will
be inserted to the BTLB (evicting the oldest entry).

Finally, the BTLB cache must not prevent the hypervisor
from executing traditional storage optimizations (e.g., block
deduplication). Consequently, NeSC enables the PF (repre-
senting the hypervisor) to flush the BTLB cache in order to
preserve meta-data consistency.

In summary, the NeSC implementation effectively balances
the need to multiplex different VFs with the application of
traditional optimizations such as caching and latency hiding.
The following sections describe our evaluation of the proposed
NeSC design.

VI. METHODOLOGY

Experimental system: Table I describes our experimental
system, which consists of a Supermicro X9DRG-QF server
equipped with a Xilinx VC707 evaluation board.

We implemented NeSC using a VC707’s Virtex-7 FPGA.
Since this revision of the Virtex7 FPGA only supports PCIe
Gen2, we had to emulate the self-virtualizing features rather
than use the SR-IOV protocol extension. We have emulated
the SR-IOV functionalities by dividing the device’s memory-
mapped BAR to 4KB pages. The first page exports the NeSC
PF, and subsequent pages export complete VF interfaces. Upon
QEMU startup, the hypervisor maps one of the VF interfaces
(offset in the BAR) into the physical address space of the
VM. A multiplexer in the device examines the address to
which each PCIe packet (TLP) was sent and queues it to the
appropriate VF’s command queue. For example, a read TLP
that was sent to address 4244 in the NeSC device would have
been routed by the multiplexer to offset 128 in the first VF.

Furthermore, since the emulated VFs are not recognized by
the IOMMU, VMs cannot DMA data directly to the VC707
board. Instead, the hypervisor allocates trampoline buffers for
each VM, and VMs have to copy data to/from the trampoline
buffers before/after initiating a DMA operation.

We note that both SR-IOV emulation and trampoline buffers
actually impede the performance of NeSC and thereby provide
a pessimistic device model. Using a true PCIe gen3 device
would improve NeSC’s performance.



Host machine
Machine model Supermicro X9DRG-QF
Processor Dual socket Intel(R) Xeon(R) CPU E5-

2665 @ 2.40GHz (Sandybridge)
Memory 64GB DDR3 1333 MHz
Operating system Ubuntu 12.04.5 LTS (kernel 3.5.0)

Virtualized system
Virtual machine
monitor

QEMU version 2.2.0 with KVM

Guest OS Linux 3.13
Guest RAM 128MB
Filesystem on NeSC
volume

ext4

Prototyping platform
Model Xilinx VC707 Evaluation board
FPGA Virtex-7 (XC7VX485T-2FFG1761C)
RAM 1GB DDR3 800MHz
Host I/O PCI Express x8 gen2

TABLE I
EXPERIMENTAL PLATFORM

Microbenchmark
GNU dd [29] read/write files using different operational

parameters.
Macrobenchmarks

Sysbench File
I/O [30]

A sequence of random file operations

Postmark [31] Mail server simulation
MySQL [32] Relational database server serving the

SysBench OLTP workload

TABLE II
BENCHMARKS

We further note that we do not emulate a specific access
latency technology for the emulated storage device. Instead,
we simply use direct DRAM read and write latencies.

We used the QEMU/KVM virtual machine monitor. Since
the VC707 board only has 1GB of RAM, we could only
emulate 1GB storage on the NeSC device. In order to prevent
the entire simulated storage device from being cached in RAM,
we limited the VM’s RAM to 128MB. We validated that this
limitation does not induce swapping in any of the benchmarks.

Finally, in order for NeSC to truly function as a self-
virtualizing device, we implemented the VF guest driver,
which is a simple block device driver, and the hypervisor PF
driver, which acts as both a block device driver and as the
NeSC management driver for creating and deleting VFs.

Benchmarks: Table II lists the benchmarks used to evaluate
NeSC. We first evaluated read/write performance metrics (e.g.,
bandwidth, latency) using the dd Unix utility. In addition, we
used a common set of macrobenchmarks that stress the storage
system. All applications used the virtual device through an
underlying ext4 filesystem.

VII. EVALUATION

This section reports the evaluation results of the NeSC
prototype. We examine the performance benefits of enabling
VMs to directly access NeSC, and compare its performance
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Fig. 9. Raw access latency observed for read (top) and write (bottom)
operations for different block sizes.

to those of virtio and device emulation. Our baseline storage
device is the NeSC PF, which presents the hypervisor a
raw storage device with no file mapping capabilities. The
baseline measurement is done by the hypervisor without any
virtualization layer.

A. Raw device performance

We begin by examining the raw device performance ob-
served by the guest VM when accessing a virtual NeSC device.
A file on the hypervisor’s filesystem is used to create a VF,
which is then mapped to the guest VM. These results are com-
pared to mapping the PF itself to the guest VM using either
virtio and device emulation. The baseline (marked Host in
the figures) is the performance observed when the hypervisor
directly accesses the PF block device (without virtualization).
In all configurations, we examine the performance of reads and
writes to the raw virtual device, without creating a filesystem.

When a guest accesses the device using virtio or device
emulation, each access request is processed by the guest I/O
stack and storage device driver, delivered to the hypervisor,
and is then processed by the hypervisor’s I/O stack and its
own device driver. When directly assigning a NeSC VF to the
guest, requests pass down the guest I/O stack directly to the
device. In contrast, in the baseline evaluation (i.e., Host in the
figure) the requests only pass down the hypervisor I/O stack.

The performance itself was measured using dd [29] for
different block sizes.

NeSC latency: Figure 9 shows the latency observed for
read (top) and write (bottom) operations, using request sizes
varying from 512B to 32KB. The figure shows that the latency
obtained by NeSC for both read and write is similar to
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Fig. 10. Raw bandwidth observed for read (top) and write (bottom) operations
for different block sizes.

that obtained by the host when directly accessing the PF.
Furthermore, the NeSC latency is over 6× faster than virtio
and over 20× faster than device emulation for accesses smaller
than 4KB.

NeSC bandwidth: Figure 10 shows the bandwidth deliv-
ered for read (top) and write (bottom) operations, using request
sizes varying from 512B to 32KB.

We begin by examining the read bandwidth. The figure
shows that for reads smaller than 16KB, NeSC obtained
bandwidth close to that of the baseline and outperforms virtio
by over 2.5×. Furthermore, for very large block sizes (over
2MB), the bandwidths delivered by NeSC and virtio converge.
This is because such large accesses ameliorate the overheads
incurred by VM/hypervisor traps (vmenter/vmexit on Intel
platforms).

When examining the write bandwidth, we observe that
NeSC delivers performance similar to the baseline for all
block sizes. This result is better than that achieved for read
bandwidth, for which NeSC is ∼10% slower than the baseline
for blocks of size 32KB and larger. Moreover, NeSC’s write
bandwidth is consistently and substantially better than virtio
and emulation, peaking at over 3× for 32KB block sizes.

Filesystem overheads: We next examine the overheads
incurred by filesystem translations. To this end, we compare
the access latency observed by the guest VM when accessing
the raw device with that observed when accessing an ext4
filesystem on the virtual device.

Figure 11 shows the write latency when accessing the
device with and without a filesystem, for NeSC and virtio
virtualization (for brevity, we omit the results obtained using
an emulated device since they were much worse than virtio).
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Fig. 12. Application speedups over other storage virtualization methods.

We only show results for writes because those are more
prohibitive for NeSC, since writes may require the VF to
request extent allocations from the OS’s filesystem.

The figure demonstrates the performance benefits of NeSC.
While the filesystem overhead consistently increases NeSC’s
write latency by ∼40µs, the latency obtained using NeSC
is similar to that of a raw virtio device. Using virtio with
a filesystem incurs an extra ∼170µs, which is over 4× slower
than NeSC with a filesystem for writes smaller than 8KB.

We note that the similar latencies observed when using a
filesystem with NeSC and when using a raw virtio device
indicate that NeSC effectively eliminates the hypervisor’s
filesystem overheads.

B. Application performance

We finally examine how the raw performance delivered by
NeSC translates to application level speedups. To this end,
we compare the performance of the applications (listed in
Figure II) when running in a guest Linux VM whose storage
device is mapped to a NeSC VF, to a virtio device and to a
fully emulated device.

The virtual storage device is mapped to the VM in the
following manner. The hypervisor creates an ext4 filesystem
on the raw device using the NeSC PF. The virtual storage
device is stored as an image file (with ext4 filesystem) on the
hypervisor’s filesystem, and the hypervisor maps the file to the
VM using either of the mapping facilities: virtio, emulation or
a NeSC VF.



Figure 12 shows the application speedups obtained using
a NeSC VF device over device emulation and virtio. For the
MySQL OLTP benchmark, the figure shows that mapping the
virtual disk using a NeSC virtual device improves performance
by 1.2× over both device emulation (Figure 12a) and virtio
(Figure 12b).

The performance improvements provided by NeSC are
even more substantial for Postmark and Sysbench File I/O.
Postmark enjoys more than 6× speedup over device emulation
and more than 2× over virtio. Sysbench File I/O, on the other
hand, enjoys a dramatic 13× speedup over device emulation,
and 1.3× over virtio.

In summary, the evaluation of the NeSC prototype demon-
strates its substantial performance benefits over state-of-the-art
storage virtualization methods. The benefits are consistent for
both read and write microbenchmarks and for common storage
benchmarks.

VIII. CONCLUSIONS

The emergence of multi-GB/s storage devices has shifted
storage virtualization bottlenecks from the storage devices to
the software layers. System designers must therefore delegate
the virtualization overheads in order to enable virtualized
environments to benefit from high-speed storage.

In this paper we presented the nested, self-virtualizing
storage controller (NeSC), which enables files stored on the
hypervisor-managed filesystem to be directly mapped to guest
VMs. NeSC delegates filesystem functionality to the storage
device by incorporating mapping facilities that translate file
offsets to disk blocks. This enables NeSC to leverage the self-
virtualization SR-IOV protocol and thereby expose files as
virtual devices on the PCIe interconnect, which can be mapped
to guest VMs.

We prototyped NeSC using a Virtex-7 FPGA and evalu-
ated its performance benefits on a real system. Our com-
parison of NeSC to the leading virtio storage virtualization
method, shows that NeSC effectively eliminates the hypervi-
sor’s filesystem overheads, as filesystem accesses to a NeSC
virtual device incur the same latency as accesses to a raw
virtio device. Furthermore, we have shown that NeSC speeds
up common storage benchmarks by 1.2×–2×.
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