
36

On the Simulation of Large-Scale Architectures Using Multiple
Application Abstraction Levels

ALEJANDRO RICO, FELIPE CABARCAS, CARLOS VILLAVIEJA, MILAN PAVLOVIC,
AUGUSTO VEGA, YOAV ETSION, ALEX RAMIREZ, and MATEO VALERO,
Barcelona Supercomputing Center and Universitat Politècnica de Catalunya

Simulation is a key tool for computer architecture research. In particular, cycle-accurate simulators are ex-
tremely important for microarchitecture exploration and detailed design decisions, but they are slow and, so,
not suitable for simulating large-scale architectures, nor are they meant for this. Moreover, microarchitecture
design decisions are irrelevant, or even misleading, for early processor design stages and high-level explo-
rations. This allows one to raise the abstraction level of the simulated architecture, and also the application
abstraction level, as it does not necessarily have to be represented as an instruction stream.

In this paper we introduce a definition of different application abstraction levels, and how these are
employed in TaskSim, a multi-core architecture simulator, to provide several architecture modeling abstrac-
tions, and simulate large-scale architectures with hundreds of cores. We compare the simulation speed of
these abstraction levels to the ones in existing simulation tools, and also evaluate their utility and accuracy.
Our simulations show that a very high-level abstraction, which may be even faster than native execution,
is useful for scalability studies on parallel applications; and that just simulating explicit memory transfers,
we achieve accurate simulations for architectures using non-coherent scratchpad memories, with just a 25x
slowdown compared to native execution. Furthermore, we revisit trace memory simulation techniques, that
are more abstract than instruction-by-instruction simulations and provide an 18x simulation speedup.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems—
modeling techniques; I.6.1 [Simulation and Modeling]: Simulation Theory—systems theory; I.6.7 [Simu-
lation and Modeling]: Simulation Support Systems—environments

General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: Multi-core, simulation, abstraction levels

ACM Reference Format:
Rico, A., Cabarcas, F., Villavieja, C., Pavlovic, M., Vega, A., Etsion, Y., Ramirez, A., and Valero, M. 2012.
On the simulation of large-scale architectures using multiple application abstraction levels. ACM Trans.
Architec. Code Optim. 8, 4, Article 36 (January 2012), 20 pages.
DOI = 10.1145/2086696.2086715 http://doi.acm.org/10.1145/2086696.2086715

This research was supported by the Consolider program (TIN2007-60625) from the Ministry of Science and
Innovation of Spain, The ENCORE project (ICT-FP7-248647), and the European Network of Excellence
HIPEAC-2 (ICT-FP7-217068). F. Cabarcas was supported in part by Programme Alßan, the European Union
Program of High Level Scholarships for Latin America (scholarship No. E05D058240CO). Y. Etsion was
supported by a Juan de la Cierva Fellowship from the Ministry of Science and Innovation of Spain.
F. Cabarcas is a professor at the Universidad de Antioquia, Medellı́n, Colombia.
A. Vega is now at the IBM TJ Watson Research Center.
C. Villavieja is currently a postdoctoral researcher at the University of Texas at Austin.
Y. Etsion is now at Technion - Israel University of Technology.
Contact author’s address: A. Rico, Barcelona Supercomputing Center, Jordi Girona 1-3, K2M 102, 08034,
Barcelona, Spain, email: alejandro.rico@bsc.es.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/01-ART36 $10.00

DOI 10.1145/2086696.2086715 http://doi.acm.org/10.1145/2086696.2086715

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

36:2 A. Rico et al.

1. INTRODUCTION

Computer architecture research and design are mainly driven by computer simulation,
as the execution of a workload on a complex processor microarchitecture can hardly
be modeled analytically, and prototyping every design point is prohibitively expensive.
However, computer architecture simulation is a slow task: the simulation of a reference
benchmark on a detailed model may take several weeks or even months. This fact is
worsened with the switch to multi-core processor designs. The overall throughput of
the host chip (i.e., the machine on which the simulator runs) is increased with every
new generation, but single-thread performance, which is key for simulation tools, does
not dramatically improve due to power constraints. Also, the target- (i.e., simulated-)
architecture models are increasingly complex, as they have to include a growing
number of cores, and the performance improvement of the host cores does not keep up
with that complexity progression.

Researchers are conscious of this problem and have been proposing techniques to
reduce simulation time. As an example, previous works have used sampling [Perelman
et al. 2003; Wunderlich et al. 2003] to statistically choose a representative portion of
the application, and provide the same insights as a full application simulation but in a
much shorter time. Other works [Miller et al. 2009; Chen et al. 2009; Mukherjee et al.
2000] opt for parallelizing simulation to reduce a single-simulation time by running it
on multiple threads. This is convenient for design stages requiring to quickly evaluate
a single or few design points. Contrarily, when many parameters must be explored,
running many serial simulations in parallel provides better simulation throughput.

Such techniques to reduce simulation time are useful for cycle-accurate simulators
[Martin et al. 2005; Wenisch et al. 2005]. These simulators are fundamental tools for
computer architecture research in order to understand the workload stress on mi-
croarchitectural structures, but their time-consuming operation limits their usability
to exploring multi-cores with a few tens of cores. In general, cycle-accurate simulators
are not suitable for simulating large-scale architectures, nor are they actually meant
to be used for this.

Early high-level design decisions, or evaluations of the cache hierarchy, off-chip mem-
ory, or interconnect may not need such cycle-level understanding of the architecture,
as microarchitecture decisions in those cases may be irrelevant or even misleading.
As it is widely suggested by the research community [Yi et al. 2006; Bose 2011], this
fact opens the door to raising the level of abstraction of the core model, as is done in
previous works [Genbrugge et al. 2010]. Furthermore, it allows to raise the level of
abstraction of the application, as it does not necessarily have to be represented as an
instruction stream. Most existing simulation tools are tied to this level of application
representation: execution-driven simulators need to work with the application instruc-
tion stream for functional emulation, as well as trace-driven simulators that model the
core pipeline details.

The idea of variable-grain simulation detail is already present in the literature and,
in fact, many existing simulators nowadays offer several levels of abstraction. Most of
these range from microarchitectural pipeline modeling, e.g., in-order and out-of-order
cores; to emulation, or functional simulation. In this paper, we categorize simulation
levels of detail and introduce a precise definition of different application abstraction
levels. In this effort, we focus on the more “abstract” end of the spectrum, which is
necessary for simulating large-scale architectures and where, to date, comparatively
little work has been done. Based on the proposed abstraction level categories, we
introduce two very high-level simulation modes that are faster than emulation, and
that actually provide more insight. These are complemented with two more detailed
simulation modes that provide as low-level modeling as instruction-by-instruction

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

Simulation of Large-Scale Architectures 36:3

simulation. To benefit from having all four abstraction modes in the same tool, we have
implemented all of them in TaskSim, a large-scale many-core simulation framework.

First, to raise the abstraction level beyond the instruction stream representation, we
leveraged the representation of parallel applications employed in high-level parallel
programming models such as OpenMP, Cilk [Blumofe et al. 1995], and new-generation
task-based programming models such as OmpSs [Duran et al. 2011], Intel TBB
[Reinders 2007] or IBM X10 [Charles et al. 2005]. In such models, the complexity
of parallelism management operations, such as scheduling and synchronization, are
hidden from the programmer and, thus, completely decoupled from the application’s
intrinsic functionality. The resulting abstraction level considers computation periods
as single atomic operations of a certain duration, and employs synchronization events
and other parallelism related operations to carry out accurate simulations for appli-
cation scalability analysis. To add more detail to this abstraction level, we extended
it with explicit memory transfers. This simple extension allows accurate simulation of
multi-core architectures using scratchpad memories, based on the fact that the com-
putation on processing elements working on such local memories is independent of
external events. Additionally, an intermediate level of abstraction incorporates tradi-
tional techniques from trace memory simulation [Uhlig and Mudge 1997; Lee et al.
2010] to provide fast and accurate simulation of the memory system.

The different TaskSim abstraction levels are compared to the ones in existing
computer architecture simulation tools in terms of simulation speed and level of
detail. Also, we evaluate their utility and accuracy, and analyze their trade-offs
between simulation speed and model detail. The purpose is not to promote any
simulator, since they complement each other, as it happens in multi-stage simulation
methodologies [Gonzalez et al. 2011]; but to show the advantages of using very high
levels of abstraction above the instruction level, and to show the benefits of having
them together with low levels of detail in the same tool.

The contributions of this paper are fourfold.

—We present a definition of different application abstraction levels and a discussion on
their usefulness for the simulation of multi-core architectures. Section 2 introduces
the concepts involved in the different application abstraction levels based on the
representation of parallel applications.

—We describe the different architecture model abstractions implemented in TaskSim
based on the previous definition of application abstraction levels. Section 3 explains
the different architecture model abstractions in TaskSim and provides details on
their implementation and use.

—We characterize the different abstraction levels available in popular computer ar-
chitecture research simulators in terms of simulation speed and simulation detail.
Section 4 describes the different abstraction levels in Simplescalar [Austin et al.
2002], Simics [Magnusson et al. 2002] (along with its timing module GEMS [Martin
et al. 2005]), and gem5 (which is the merge of M5 [Binkert et al. 2006] and GEMS);
and presents an evaluation of their trade-offs between simulation speed and simu-
lation detail along with the abstraction levels presented in this paper.

—We evaluate the utility and accuracy of the different architecture model abstractions
in TaskSim. Several experiments are shown in Section 6 to evaluate the different
TaskSim model abstractions.

2. APPLICATION ABSTRACTION LEVELS

Historically, various high-level simulators [Mukherjee et al. 2000; Badia et al. 2003;
Tikir et al. 2009] have used event-driven simulation to achieve early design decisions

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

36:4 A. Rico et al.

task switch

Node 1
Node 2
Node 3
Node 4

communicationcomputation

time

Core 1
Core 2
Core 3
Core 4

time

task creation

Core 4

time

ld @0,8 st @1,8 ld @2,4 ...

CPU 1350u s
MPI_send msg1, p2, 8KB
CPU 15u s
MPI_recv msg2, p4, 8KB
CPU 2580u s

CPU user_code, 250us
CPU create_task, 30us
create_task t1
CPU user_code, 200us
CPU create_task, 30us
create_task t2

load 0x90, 8 bytes
store 0x98, 8 bytes
load 0x104, 4 bytes
load 0x108, 4 bytes
store 0x60, 4 bytes

Process 1 (Node 1)

Thread 1 (Core 1)

(a)

(b)

(c)

task executionidle time

Core 4

time

load add cmp beq mul mul br...

34: load r3, r1 (0x8f)
38: add r4, r7,r22
3C: cmp r4, r3
40: beq (next_i: 7D)
7D: mul r27,r 25, r26

stor e(d)

ld @3,4 st @9,4

Fig. 1. Different application abstraction levels: (a) computation + MPI calls, (b) computation + synchroniza-
tions, (c) memory access list, and (d) instruction list.

and high-level insights for architectures which cycle-accurate simulation was unfeasi-
ble. An example of this kind of high-level computer architecture simulators is Dimemas
[Badia et al. 2003]. It models distributed-memory clusters with up to thousands of
cores, and its main target is parallel application analysis. Dimemas simulations
mainly focus on reflecting the impact of different cluster node configurations and
interconnection qualities on MPI communications. As different processes in an MPI
application execute on different nodes that do not interfere among each other, only MPI
communication has to be modeled for a proper network contention simulation. Thus,
Dimemas abstracts the application computation on a processor core, as computation
periods of a certain duration, and then accounts for all MPI calls for the modeling of
communications, synchronization and data transfers.

Figure 1(a) shows the timeline of an MPI application. The application is divided into
computation and communication periods, both referred to as bursts. On the right of
the timeline, a sample of a Dimemas trace is shown. The contents of a Dimemas trace
follow the aforementioned application structure: computation bursts are expressed as
CPU events, and there is a specific event for each MPI call (e.g., MPI send, MPI recv).

For the simulation of smaller systems like a multi-core chip or a shared-memory
node, the Dimemas approach is not appropriate. Different threads in a shared-memory
application make use of common resources to access the shared address space, al-
though they execute on separate cores. In that case, the level of abstraction must be
lowered to be capable of observing the internals of the computation in shared-memory
applications, or between inter-process communications in MPI applications.

In order to represent computation at that shared-memory level, applications can be
expressed as in high-level programming models such as OpenMP, Cilk [Blumofe et al.
1995], and more recent task-level programming models such as OmpSs [Duran et al.
2011], Intel TBB [Reinders 2007] or IBM X10 [Charles et al. 2005]. In these models,

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

Simulation of Large-Scale Architectures 36:5

the internals of the parallelism-related functionalities, including scheduling and syn-
chronization, are hidden and just exposed to the programmer or compiler through an
API that will be invoked at runtime. Therefore, the user just has to focus on coding the
intrinsic application behavior and, in some cases, annotating the resulting sequential
code, or, in others, calling the necessary routines for parallelism-related operations.
This strategy ends up completely decoupling the intrinsic application behavior, which
is independent of the sequentiality or parallelism of the actual implementation, from
the parallelism-management code, which is, in fact, encapsulated in the associated
runtime system software.

Figure 1(b) shows the timeline of a task-based parallel application, which could also
be part of an MPI application, as it occurs in the Roadrunner supercomputer [Barker
et al. 2008] and other systems featuring GPGPUs. As for Dimemas, computation bursts
are expressed as single CPU events, and are interleaved with synchronization and other
parallelism-management operations, and, additionally, explicit memory transfer oper-
ations (for distributed-memory multi-cores), which all determine the execution inter-
leaving on different threads. Using this approach, different tasks can be assigned to
different cores during simulation, as long as they maintain the synchronization se-
mantics expressed in the trace. For instance, a new task cannot start executing on an
available core until it has been created and scheduled. Similarly, a task cannot start
until its input data set is available for access. In the example in Figure 1(b), Core 1
creates and schedules tasks (gray phases), and cores from 2 to 4 execute those tasks
(phases between dark gray) as they are being created by Core 1.

This level of abstraction is appropriate for quickly evaluating application scalability:
whether an application can make use of an increasing number of cores; and memory
bandwidth requirements: whether data is transferred fast enough to cores to avoid
slowdowns. It is worth highlighting that, for accelerator-based systems where compu-
tation cores work on non-coherent scratchpad memories (e.g., GPUs, embedded), this
abstraction level includes all information required for an accurate evaluation of the
memory system. Since such accelerators only access data in their scratchpad mem-
ories, the computation is not affected by any other components in the system. This
means that, as long as the accelerator core and scratchpad memory features remain
unchanged, modifications to the rest of the memory system and the interconnection
network will not affect the accelerator computation delay. Thus, modeling data trans-
fers between off-chip memory, or last-level cache (if any), and scratchpad memories is
sufficient for an accurate simulation.

However, for cache-based architectures this approach has, as is intended, some lim-
itations in favor of simulation speed. The level of abstraction must be lowered to
simulate cache-based architectures accurately, so the memory system is stressed with
the memory accesses performed by the application. Figure 1(c) shows a list of memory
accesses corresponding to a specific chunk of computation. This kind of representa-
tion was widely used by trace memory simulation methods [Black et al. 1996; Uhlig
and Mudge 1997] that benefited from trace reduction techniques (e.g., trace stripping
[Puzak 1985; Wang and Baer 1990]) to speed up simulation. More recently, some works
[Lee et al. 2009; Lee et al. 2010] have proposed simulation techniques to accurately
simulate the performance of in-order and out-of-order cores using memory access traces
at this level of application abstraction.

Additionally, when it is necessary to explore microarchitectural issues concerning the
core execution pipeline, or a more detailed understanding of the application execution
is required, the simulated application needs to be represented at the instruction level.
Figure 1(d) shows a list of instructions pertaining to a computation burst. This is the
lowest level of representation of an application, and it is the one used in execution-
driven simulators, such as Simics or gem5, and in many trace-driven simulators, such

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

36:6 A. Rico et al.

as IBM’s Turandot [Moudgill et al. 1999]. As previously mentioned, this representa-
tion level allows the understanding of detailed activity on the microarchitecture, but
prevents the exploration of large-scale multi-cores due to its time-consuming operation.

3. ARCHITECTURE MODEL ABSTRACTIONS

The application abstraction levels shown in Figures 1(b), 1(c) and 1(d) are employed
to implement several architecture model abstractions in TaskSim. To work with such
application abstraction levels, we found appropriate the use of event-driven simulation
and the employment of traces for all levels, so functional emulation is not required at
simulation time, and the application can be actually abstracted beyond the instruc-
tion stream level. This has some limitations, as having to manage potentially large
trace files. Also, traces cannot capture timing-dependent behavior (e.g., varied I/O tim-
ing when modeling I/O components), and cannot capture wrong-path instructions for
precisely simulating the effects of speculation on branch mispredictions.

Another drawback of trace-driven simulation is its limitation for appropriately sim-
ulating multithreaded applications, as the execution interleaving on different threads
may vary across different architecture configurations, which is not possible to repro-
duce at simulation time if the application behavior was statically captured in traces.
We employ the approach presented in a previous paper [Rico et al. 2011] to overcome
this issue and be able to simulate the execution of multithreaded applications on the
many-core architectures of interest (see Section 3.1 for more details on this method).

The use of traces also has some advantages over execution-driven simulation. For
instance, trace-driven simulation provides more flexibility, due to supporting different
ISAs without the need of recompilation. Also, it has much lower memory requirements
because it does not need to manage application data; and allows working with available
application traces, for which sources may not be accessible due to licensing issues.
However, the main advantage for this work is the possibility to simulate at different
application abstraction levels and also the capability of improving the already high
simulation speed using event-driven simulation optimizations.

The different application abstraction levels allow the establishment of four architec-
ture model abstractions as follows. The application abstraction level in Figure 1(b) gives
the basis for a mode that only accounts for computation bursts and synchronizations, re-
ferred to as burst; and to a second mode that extends burst with explicit memory trans-
fers, referred to as inout. The abstraction level shown in Figure 1(c) is employed in the
mem mode of TaskSim for trace memory simulation; and, lastly, the application abstrac-
tion in Figure 1(d) is used to provide the instr mode for instruction-level simulation.

The burst mode operates on a set of cores that just execute the computation bursts
assigned to the associated threads, and carry out their synchronization through the
parallelism-management operations in the trace. Therefore, simulation of the memory
system and core pipeline is not necessary, so they are not even present on simulations in
burst mode. However, for all other modes (inout, mem and instr), the cache hierarchy,
network-on-chip and off-chip memory are simulated for a proper timing of memory
accesses. More details on the implementation of these four architecture abstractions
are given in the following sections.

3.1. Burst Mode

The burst mode implements a fairly simple event-driven core model. There is one
trace for the main task, corresponding to the starting thread in the program, and
then one trace for every other task executed in the application.1 A task trace includes

1This mode also operates with loop-level parallelism, but we limit the discussion to task-based applications
for simplicity. For loop-based parallel regions, separate traces are captured for different iterations of the
application.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

Simulation of Large-Scale Architectures 36:7

all computation bursts as CPU events, and the required synchronization events for
a correct parallel execution. Since different tasks have separate traces, they can be
individually scheduled to available cores. The parallel work scheduling can be done
either fixed or dynamic. The difference is that fixed scheduling follows the same order
as in the original run, while dynamic scheduling employs an external runtime system
to re-execute scheduling for the simulated architecture, as is explained later.

For fixed scheduling, as soon as a task is created and scheduled, any available
core can start its execution. This mechanism is implemented using a semaphore-like
strategy, i.e., signal and wait operations. After a task creation burst, a signal event
unblocks the execution of the corresponding task, which is assigned to a core as soon
as it becomes free.

The same signal-wait mechanism allows the simulation of thread synchronizations
such as task wait (waiting for all previously-created tasks), wait on data (waiting for a
producer task to generate a piece of data) and barriers.

The trace format for the burst mode using fixed scheduling includes the following
event types.

—CPU indicates the beginning of a computation burst. It includes a computation type
id and its duration in nanoseconds.

—Signal/Wait is used for thread synchronization. It includes a semaphore id.

The core model using this trace format operates as follows. One of the simulated cores
starts simulation by reading the first event in the main task trace. Computation-burst
events are then processed by adding their duration to the current cycle value in the
target architecture (a ratio can be applied to burst durations to simulate different core
performance levels). The rest of the cores in the system start idle, and wait for tasks
to be created and scheduled. Whenever a signal event for task creation is found in the
main task, any idle core can start the corresponding task execution. The core taking
the new task becomes active, and starts processing its events.

For simulations using dynamic scheduling, TaskSim adopts the approach presented
in a previous work [Rico et al. 2011]. The simulator employs an interface to a runtime
system that executes the parallelism-management operations for the application “run-
ning” on the simulated machine. In this case, the Signal and Wait event types are not
necessary, and the trace includes, instead, the calls to the appropriate runtime system
operations. When runtime call events are found in the trace, the runtime system is
invoked to execute them, and perform the corresponding scheduling and synchroniza-
tion operations. These operations are executed based on the state of the simulated
machine, and task execution is simulated according to the decisions made by the inte-
grated runtime system software. More information about this method can be found in
the associated publication [Rico et al. 2011].

3.2. Inout Mode

The inout mode builds on top of the burst mode to provide precise simulation of multi-
core architectures using scratchpad memories (non-coherent distributed shared mem-
ory systems). As previously mentioned, the execution of a core accessing a scratchpad
memory is not affected by the features of other elements in the system. The access to
a scratchpad memory is deterministic, and the core will only be delayed on eventual
synchronizations with explicit memory transfers between the scratchpad memory and
the cache hierarchy levels, or off-chip memory.

The trace format of the burst mode is enriched with specific events that indicate the
initiation of explicit memory transfers (e.g., DMA), and the synchronization with their
completion before bursts reading that data.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

36:8 A. Rico et al.

—DMA is used to initiate an explicit memory transfer (includes the data memory address,
size and a tag id).

—DMA wait is used to synchronize with previously initiated memory transfers (includes
tag id).

The application simulation in inout mode works as in the burst mode but, when a DMA
event is found, that core sends the proper commands to program the memory transfer
in the corresponding DMA engine. The simulation of that memory transfer takes place
in parallel with the processing of computation bursts. Then, on a DMA wait event, the
core stalls until it receives acknowledgement of the completion of the corresponding
memory transfer.

The core model in both burst and inout modes is intentionally simplistic. To avoid the
slow detailed simulation of pipeline structures, the target core is assumed to feature
the same characteristics as the underlying machine on the traced execution (or a
relative performance using ratios for computation bursts). Despite this simplicity, the
isolation of computation on cores with scratchpad memories results in accurate memory
system and interconnection network evaluations that, for large target accelerator-
based architectures, complete in a few minutes, as is shown in Section 6.2.

3.3. Mem Mode

For appropriately stressing the cache hierarchy elements and off-chip memory on cache-
based systems, the mem mode considers the memory accesses performed by the appli-
cation. The burst mode is extended to add trace memory simulation to the computation
bursts in the target application. For each computation burst, a trace of all correspond-
ing memory accesses is captured and a link2 to the resulting memory access trace is
included in the associated CPU event. Then, at simulation time, when a CPU event is pro-
cessed, the computation burst duration in the trace is ignored, and the corresponding
memory access trace is simulated instead.

The trace formats of trace memory simulation works in the 80s and early 90s, in-
cluded just the memory accesses, as the timing of the computation core was not con-
sidered, and only the cache and memory system was simulated. However, in order
to model the core performance, the memory access trace also includes the number of
non-memory instructions between memory accesses, thus leading to a trace format
analogous to the one presented in a previous paper [Lee et al. 2010]. The records in the
trace include the following information related to each memory access:

—access type: Load or Store,
—virtual memory address,
—access size in bytes,
—number of instructions since the previous memory instruction.

This information is employed in the core model to simulate the performance of an out-
of-order core by modeling the re-order buffer (ROB) structure; a technique introduced
in a previous paper [Lee et al. 2009], and referred to as ROB Occupancy Analysis.
Using this method, the simulation runs as follows. When the simulated core reaches
a CPU event, it starts processing the associated memory access trace referenced by the
event record. It reads the first memory access in the trace, increases the cycle value
by the number of previous instructions factored by a given CPI value, and generates
the memory access that is sent to the first-level cache. Simulation keeps processing
the following memory accesses in the trace in the same manner, allowing several
concurrent memory accesses in flight. However, to avoid performance overestimations

2Currently, we employ the trace file name as a reference to the memory access trace of a computation burst.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

Simulation of Large-Scale Architectures 36:9

and account for resource hazards, simulation considers the limitation imposed by the
ROB size. For every memory access, the associated number of previous instructions
and the memory instruction itself, are stored in the ROB. Then, when the ROB is full,
no more trace records are processed, and only the memory accesses in the ROB are
allowed to be concurrently accessing the memory system. Then, when a memory access
has completed, the corresponding ROB entries are freed, and if there is enough space,
the next memory access in the trace is processed.

This technique assumes that all memory references are independent. However, for
many applications, data dependencies may be the primary factor limiting memory-level
parallelism. Memory access traces can then be enriched with data dependencies and
only allow independent accesses to be sent in parallel. This extension would provide
a closer approximation to instruction-level simulation, and, although it is not yet in-
cluded in the results shown in this paper, it is expected to add some complexity to the
tracing procedure, but hardly affect simulation time. The tracing tool must tag memory
references and track the dependency chains while, during simulation, it just requires
to check if the tag of the preceding dependency has completed.

This method is, in any case, faster than working at the instruction level, but we
further speed up simulation by applying trace stripping [Puzak 1985; Wang and Baer
1990] to TaskSim memory access traces. This technique consists of simulating the
memory access trace on a small direct-mapped filter cache, and only storing misses
and the first store to every cache line (only required for the simulation of write-back
caches). The resulting traces experience reductions in size of up to 98%, depending on
the application, and will perform the same number of misses as the original trace on
simulations of caches with a number of sets equal or larger to the number of sets of the
filter cache. A limitation of this technique is that the cache line size of the simulated
architecture must be the same that was used in the filtering process for the filter cache.

The results in later sections show that this architecture model abstraction provides
a high simulation speed that is 18x faster than simulating at the instruction level.

3.4. Instr Mode

In order to simulate core activity more accurately on systems with caches, the instr
mode extends the burst operation mode to allow the employment of instruction traces
for computation bursts, similarly to the extension applied for the mem mode. The in-
struction flow is captured at tracing time using PIN [Luk et al. 2005], a dynamic binary
instrumentation tool, and an instruction trace file is generated for every computation
burst. Then, as for the mem mode, the CPU event format is extended to include an extra
field for storing a reference to the corresponding instruction trace.

The core model in instruction mode operates exactly as in burst mode, but the dura-
tion of CPU events is ignored, and the corresponding instructions are simulated instead.
There are many ways to encode an instruction trace but, in general, they require the
inclusion of the following information for every instruction:

—operation code, which can be more or less generic depending on the target ISA and the
detail of the core model (e.g., arithmetic rather than the specific instruction opcode);

—input and output register lists;
—memory address (and data size): for memory instructions;
—next instruction: for branch instructions.

This mode allows a detailed core simulation. Obviously, the more accurate the core
model, the longer the simulation takes to complete. In TaskSim, different instruction-
level core models can be used, and even switched from one to another at simulation
time, as described in the next section.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

36:10 A. Rico et al.

Table I. Summary of TaskSim Simulation Modes. This includes their applicability on computer architecture
evaluations, and their features also comparing to state-of-the-art (SOA) simulators

Abstraction level Applicability Features
Burst Application scalability Potentially faster than native execution

Runtime system evaluation 100x faster than SOA functional simulators

Inout Memory system 100x-1000x faster than SOA instruction-level sims
Interconnection network Accurate for scratchpad-based CMPs

Mem Cache hierarchy 10-100x faster than SOA instruction-level sims

Instr Core microarchitecture –

3.5. Summary

Table I shows a summary of the presented simulation modes. This includes their ap-
plicability to different architecture types or software domains and their usability for
computer architecture studies. The burst mode allows to evaluate application scalabil-
ity and, when it works integrated with a runtime system (as described in Section 3.1),
it also provides a framework to perform runtime system evaluations, e.g., scheduling
policies. On top of these features, the inout mode allows to evaluate the memory system
and interconnection network designs, and it is accurate for scratchpad-based architec-
tures. The mem mode provides support for the evaluation of the memory system and
interconnection, as well as the inout mode, and also allows to analyze the design of
the cache hierarchy components. On top of this, the instr mode additionally provides
support for evaluating the microarchitecture of the core pipeline structures. Table I
also shows an estimate of the simulation modes speed to give an idea of the simulation
speed – detail trade-offs. Nevertheless, these trade-offs are more thoroughly evaluated
in Section 4.

It is worth mentioning that TaskSim allows to switch between different levels of
abstraction for different computation bursts along a single simulation. This is very
useful to quickly traverse initial phases of an application in burst/inout mode (similarly
to fast forwarding in some sampling-based simulation methodologies), and then execute
the computation bursts of interest (e.g., SimPoints [Perelman et al. 2003]) in mem or
instr mode.

4. SIMULATION SPEED-DETAIL TRADE-OFF

Computer architecture simulators often provide several levels of abstraction with dif-
ferent simulation speeds and levels of detail. Having different abstraction levels is
beneficial, not only due to having a faster (usually higher level) or more accurate sim-
ulation (usually lower level), but because each of them allows the researcher to reason
about certain aspects of the design.

We have chosen three of the most popular computer architecture research simula-
tion tools to analyze their trade-offs between simulation speed and simulation detail
for their different levels of abstraction. The first is Simplescalar [Austin et al. 2002].
It became very popular during the early 2000s due to its execution-driven nature,
and still nowadays is used for single-processor simulations, many of them being part
of reliability studies. The second is Simics [Magnusson et al. 2002], and its timing-
module GEMS [Martin et al. 2005]. Simics has been, and still is, largely used in
academia for multi-core research even though its primary target is software devel-
opment. It performs full-system simulation to run unmodified operating systems at a
functional level, and provides an interface to incorporate modules for time accounting.
One of the most popular timing modules is GEMS, which incorporates Ruby - a compo-
nent to simulate multi-core and multi-chip memory systems including cache hierarchy,

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

Simulation of Large-Scale Architectures 36:11

Table II. Comparison of Abstraction Levels in Existing Simulators in Terms of Simulation Speed and Model Detail

Abstr. level Speed (KIPS) Ratio to fastest Ratio to native Model detail
SIMPLESCALAR

sim-fast 20,425 1 288.07 functional only
sim-cache 5,946 3.43 999.29 sim-fast + cache hier. model
sim-outorder 1,062 19.23 5,669.55 sim-cache + OOO pipeline model

SIMICS + GEMS
standalone 32,517 1 128.23 functional only
Ruby 129 251.54 31,827.10 adds cache hier. and mem. model
Ruby + Opal 14 2,237.40 260,017.16 Ruby + OOO pipeline model

GEM5
func 984 1 4,381.74 functional only
cache 401 2,45 10,734.61 adds cache hier. and mem. model
inorder 47 20,92 98,335.57 cache + in-order pipeline model
ooo 85 11,80 46,984.21 cache + OOO pipeline model

TASKSIM
burst 4,175,762 1 0.80 computation bursts and sync.
inout 132,573 31.50 25.70 burst + explicit mem. transfers
mem 2,067 2,020.32 1,561.27 burst + trace memory simulation
instr 113 36,919.01 31,173.21 burst + core pipeline model

memory controllers, off-chip memory modules and interconnection network. GEMS
also includes a detailed out-of-order processor model, referred to as Opal. The third
studied simulator is gem5, which is the merge of M5 [Binkert et al. 2006] and GEMS.
The gem5 simulator performs full-system simulation and is gaining popularity due to
its open source nature (contrarily to the commercial licensing of Simics). It can also
work in system-call emulation mode which, for simplicity, is the mode analyzed in this
section.

All three simulators are execution-driven, and thus rely on being provided with the
executable binary files of the application. This leads them to work at the instruction
level of abstraction (Figure 1(d)), but they still provide several levels of model ab-
straction, ranging from the highest level being functional emulation, and, the lowest,
the simulation of the core pipeline structures. All abstraction levels in Simplescalar,
Simics+GEMS and gem5 are compared to the ones presented in this paper in terms of
simulation speed and modeling detail. As a first observation, the instr level in TaskSim
considers the instruction stream of the application as well, but mem, inout and burst
benefit from a higher-level abstraction of the application representation to provide
higher simulation speeds while still being insightful for different purposes.

Table II includes the different abstraction levels and performance of the simulators
considered in this study. The results were extracted from executions on an Intel Xeon
running at 2.8GHz, with 512MB of L2 cache, 2GB of DRAM at 1333MT/s and running a
32-bit Linux distribution. For each application, simulations were repeated four times,
and the fastest was taken for all abstraction levels in order to avoid interference due to
operating system activity. All simulators were configured to simulate a single processor,
which is the fastest configuration in all cases, since the addition of simulated cores usu-
ally leads to a superlinear degradation in simulated cycles per second. A set of scientific
applications, listed in Table IV, were used for these experiments, all compiled with gcc,
-O3 optimization level and cross-compiled for PISA (Simplescalar), SPARC (Simics),
Alpha (gem5) and x86 (TaskSim). The x86 binaries were executed on the aforemen-
tioned system to generate traces for the different abstraction levels of TaskSim.

The different abstraction levels of Simplescalar in this study are sim-fast, which
just performs functional simulation supported by system-call emulation; sim-cache,

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

36:12 A. Rico et al.

which just simulates the first- and second-level caches with immediate update and a
fixed latency for L2 cache misses (off-chip memory accesses); and sim-outorder, which
adds to sim-cache the simulation of an out-of-order processor pipeline. The three lev-
els of abstraction correspond to the different binaries generated when compiling the
Simplescalar distribution sources.

The highest abstraction level of Simics is its standalone execution (no timing mod-
ules, -fast option) for functional simulation. The second level is the incorporation of
the GEMS Ruby module, set up for a MOESI CMP token configuration; and the lowest
level is the addition of the Opal module. We could have also included an intermediate
simulation setup including Opal but not Ruby. However, detailed modeling of proces-
sors’ pipelines without a model for memory hierarchy does not, in our opinion, provide
any additional insight because other simulators do not contain any similar level of
abstraction.

As previously mentioned, gem5 is configured to run in system-call emulation mode,
and to support the Alpha ISA. The different abstraction levels provide functional simu-
lation (func: no flags are specified); the simulation of the cache system (cache: --caches
--l2cache --timing); the addition to cache of an in-order processor pipeline model
(inorder: --caches --l2cache --inorder); and the addition to cache of an out-of-order-
processor pipeline model (ooo: --caches --l2cache --detailed). The TaskSim archi-
tecture model abstractions were discussed in depth in Section 3.

The second column in Table II shows the simulation speed of the different abstrac-
tion levels in kilo-instructions per second, and the third column shows the ratio of the
simulation speed versus the fastest mode in the same simulator. The values shown are
the average of all applications. As expected, as the level of abstraction is lowered, sim-
ulation gets slower. However, simulation speeds significantly vary between simulators
due to their different simulation approaches: execution- vs. trace-driven, full-system
vs. system-call emulation; and their different levels of modeling detail, e.g., Ruby, gem5
and TaskSim model the off-chip DRAM memory operation in detail, while Simplescalar
applies just a fixed latency to L2 cache misses. The differences between the various
functional modes of the execution-driven simulators are quite significant. The speed
of functional emulation in Simics is noticeably boosted with respect to other levels of
abstraction due to its software development target. Even though Simics simulates full-
system, it is actually faster than sim-fast, whose model is much simpler. Contrarily,
gem5 functional mode is much slower even in system-call emulation mode as, in this
case, the target is architecture simulation.

The abstraction levels modeling the core pipeline details and memory system are the
slowest in all simulators and their speed ranges from 14 KIPS for Ruby+Opal, which
implements a very detailed model, to 1,062 KIPS for Simplescalar which, apart from
being not so complex, also benefits from sitting on a simple memory system model. It
is remarkable that the inorder model of gem5 is actually slower than the out-of-order
model which, intuitively, should not be the case, since an out-of-order core model is
more complex. This fact has been consistently found across different applications and
different environment setups of gem5.

The forth column shows the ratio to the execution of the application on the host
machine. It must be noticed that the comparison of simulation speed between different
simulators does not match the comparison of their ratio to native execution. This is
because different simulators employed binaries compiled for different architectures
that required different numbers of executed instructions to complete.

It is worth highlighting that the TaskSim burst mode can be faster than native
execution, as was found for the applications in this study, and is 128x faster than the
fastest functional mode. This makes sense, as the speed of the burst mode depends on
the number of events captured in the trace. In this case, the applications were compiled

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

Simulation of Large-Scale Architectures 36:13

for task-parallel execution and simulated on a single processor, which is useful for the
sake of comparison, but the burst mode is more interesting when simulating parallel
systems, as is shown in the experiments in Section 6.1. The rest of the modes in TaskSim
simulate the memory system, which slows down simulation in favor of simulation
detail. The inout mode benefits from the aforementioned isolation of execution on
accelerators to get a high simulation speed, only 25x slower than native execution, as
only explicit memory transfers have to be simulated. Finally, the mem mode provides an
18x speedup compared to the instr mode. Among the rest of abstraction levels that only
simulate the memory system, only sim-cache is faster, which, as previously mentioned,
uses a simple model for caches and does not simulate the off-chip memory.

5. SIMULATION SETUP

In this section, we provide details about the simulation setup for the experiments that
evaluate the levels of abstraction of TaskSim in Section 6, and review some of the
features of the TaskSim simulation environment to better understand the results.

One of the aspects that ease the implementation of different architecture abstraction
levels in TaskSim is modularity. TaskSim employs an in-house simulation infrastruc-
ture that allows the description of the target architecture as a set of modules and its
connections. This functionality eases the independent modeling of different architec-
ture components thanks to their strict modular encapsulation.

As previously mentioned, the core microarchitecture model in TaskSim is intention-
ally simplistic (as described in Section 3). Instead, the modeling effort is devoted to
the memory system –cache hierarchy, scratchpad memories, and off-chip memory– and
the interconnection network. To provide a sense of the level of modeling detail in the
memory system and interconnection network, a list of the main configuration param-
eters is shown in Table III. The first level caches are core-private, but shared caches
in higher levels of the hierarchy can be split into several banks that can be configured
with two different data placement policies [Vega et al. 2010]: data replication, and data
interleaving. The interconnection network topology depends on the target architecture
model. The current TaskSim default network module models a customizable all-to-all
interconnection with configurable link latency and bandwidth, and maximum number
of outstanding transfers. Memory controllers and off-chip memory modules are modeled
in a high level of detail to mimic the features of DDR2 and DDR3 DRAM DIMMs.

As it is common in simulators using discrete-event simulation, only the cycles where
there is any kind of activity are simulated [Jefferson and Sowrizal 1982]. Thus, in
TaskSim, idle cycles are skipped, and in cycles with activity, only the modules involved
in that activity are actually executed.

Having this infrastructure, TaskSim allows to compose different architectures
reusing a common set of modules. Figure 2 shows three examples of target architectures
depicted in terms of modules and connections, which are employed in the experiments
in Section 6. The first case, in Figure 2, is an SMP configuration with three levels of
cache, with a configurable number of cores, L3 cache banks, memory controllers and
memory modules. This configuration is employed in Sections 6.1 and 6.3.

The example in Figure 2 is a model of the STI Cell/B.E. processor [Kahle et al. 2005].
In this configuration, the L1 and L2 caches are configured to mimic the ones available
for the Cell/B.E. PPU, the interconnection network module was adapted to provide
the same bandwidth and latency as the Element Interconnect Bus, the scratchpad
memory (LM) modules were configured as Local Stores, and the DMA engine module
was modified to work as the Memory Flow Controller.

The third example, in Figure 2, is the SARC project architecture [Ramirez et al.
2010]. A two-level hierarchical network connects the computation cores in the system
to a three-level cache hierarchy and a set of memory controllers giving access to off-chip

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

36:14 A. Rico et al.

Table III. TaskSim Main Configuration Parameters

Parameter Description (units) Default Value
Cache (L1/L2/L3)

Associativity Number of ways per set 2/4/4
Size Total cache size (bytes) 32K/256K/4M
Data placement Replication or interleaving replication
MSHR entries MSHR table size 8/64/64

Scratchpad memory
Size Total memory size (bytes) 64K
Latency Access latency (cycles) 3

DMA engine
Queue size DMA queue size 16
Maximum transfers Maximum concurrent transfers 16
Packet size DMA packet size (bytes) 128

Interconnection Network
Maximum transfers Maximum concurrent transfers number of links
Latency Link latency (cycles) 1
Bandwidth Link bandwidth (bytes/cycle) 8

Memory Controller
Queue size Access queue size 128
Data interleaving mask Sets interleaving granularity 4096
Number of DIMMs Number of DRAM DIMMs 4

DRAM DIMM
autoprecharge Enable/disable autoprecharge disabled
data rate Transfers per second (MT/s) 1600
burst Number of bursts per access 8
tRCD,tRP,CL,tRC,tWR,tWTR Timing parameters 3

The experiments in this paper use the default values unless it is explicitly stated
otherwise.

Core Core Core Core...

Interconnection Network

MIC

D
R

A
M

D
R

A
M

...

MIC

D
R

A
M

D
R

A
M

...
L3 L3...

...

L2

CPU

L1

(a) SMP

Interconnection Network

PPU

L1

L2

SPE SPE SPE SPE

DMA

SPU LM

SPE SPE SPE SPE

MIC

D
R

A
M

D
R

A
M

(b) STI Cell/B.E.

Global Interconnection Network

MIC

D
R

A
M

D
R

A
M

...

MIC

D
R

A
M

D
R

A
M

...
L3 L3...

C
lu

st
er

 In
te

rc
. N

et
w

or
k

L2

Core

Core

...

C
lu

st
er

 In
te

rc
. N

et
w

or
k

L2

Core

Core

...

...
CC+
DMA

C
P

U

LM

L1

...

(c) SARC architecture

Fig. 2. TaskSim architecture configurations used in the experiments in this paper.

memory. The several last-level cache (L3) banks are shared among all cores, and data is
interleaved among them to provide maximum bandwidth. The L2 banks are distributed
among different core groups (clusters) and their data placement policy can be configured
to optimize either latency (data replication), or bandwidth (data interleaving). Each
core has access both to a first-level cache (L1), and to a scratchpad memory (LM). To
have deterministic quick access to data, applications may map a given address range
to the LM, thus avoiding cache coherence issues. A mixed cache controller and DMA
engine manages both memory structures (L1 and LM), and address translation. The
STI Cell/B.E. and the SARC architecture configurations are employed in Section 6.2.

3Default values for DRAM timing parameters match the Micron DDR3-1600 specification.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

Simulation of Large-Scale Architectures 36:15

Table IV. The Benchmark Applications used in this Paper, and Their Respective Task information

Name Prog. model Description No. tasks Avg. task runtime
LU OmpSs Block Matrix LU decomposition 54,814 464,058 ns
Cholesky OmpSs Block Matrix Cholesky factorization 45,760 383,005 ns
Kmeans OmpSs K-Means clustering 31,957 400,421 ns
FFT3D CellSs Fast Fourier Transform 3D 32,768 13,910 ns

For the experiments in the next sections, we use the set of scientific task-parallel
applications listed in Table IV. The table includes the total number of spawned tasks,
and the average task duration. The applications written in the OmpSs programming
model are compiled with the Mercurium source-to-source compiler [mer 2011] to gen-
erate parallel code that employs the NANOS++ [nan 2011] runtime system as the
underlying library managing parallelism. The OmpSs applications are instrumented
to generate traces for the different abstraction levels of TaskSim following the method-
ology presented in a previous paper [Rico et al. 2011]. Simulations using these traces
employ the dynamic scheduling approach described in Section 3.1.

The FFT3D application is also compiled with the Mercurium compiler, but to use the
CellSs runtime system [Bellens et al. 2006]. In this case, the fixed scheduling approach,
also described in Section 3.1, is the one employed for simulation.

6. EVALUATION

6.1. Application Scalability Evaluation using Burst

The experiments in this section show the validation of the burst mode for evaluating
application scalability. Simulations are compared to real executions on a 16-core SMP
Linux box with four quad-core Intel Xeon E7310 chips running at 1.6GHz, and 16GB
of DDR2-667 memory. The applications are first run natively on the real system for
different numbers of threads ranging from 1 to 16. Execution time is measured for the
computation section, avoiding the initialization part of the application. The executions
are repeated four times and the shortest is taken to avoid interference due to operating
system activity. Then, the applications are run with instrumentation to generate traces
for the burst mode. Using those traces, we perform simulations also ranging from 1
to 16 threads. Figures 3 and 3 show the scalability on the real machine and on the
simulated platform. As can be seen, the scalability obtained from the simulator is close
to the results on the real system. Figure 3 shows the absolute percentage error of the
execution time of all applications and different numbers of threads. The difference in
execution time between simulation and native execution is in all cases below 8%, and
part of that is due to instrumentation overheads to generate the trace, which do not
occur in native executions.

Furthermore, we show the projection of scalability for larger systems. Figure 3 shows
the scalability of the evaluated applications for architecture configurations with larger
numbers of cores up to 256. The dotted rectangle contains the numbers already shown
in Figure 3, in which the applications scale well. However, none of them scales beyond
32 processors. Simulation results show that performance is limited in those cases by
the rate at which tasks are generated, a problem that has been also found in previous
works [Rico et al. 2009]. Task-based applications following a master-worker scheme,
have a master thread that generates tasks and a set of worker threads that execute
them. If the task generation rate of the master thread is not fast enough to keep up with
the workers task completion rate, workers will be idle waiting for tasks. The cores are
then underutilized, and application performance does not scale. In this case, the effect
starts occurring at 32 processors, and it is limiting performance for 64 and beyond.
Our simulations show that, in order to scale beyond 32 and 64 cores, these applications

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

36:16 A. Rico et al.

(a) Application scaling on real machine (b) Application scaling on simulated platform

(c) Execution time error native vs. simulation (d) Application scalability for larger configurations

Fig. 3. Validation of burst mode for scalability studies.

would require to be tuned by enlarging the task granularity or adopting a parallel task
generation scheme with several master threads.

As the experiments show, the burst mode is useful and accurate for scalability studies
and application analysis. Furthermore, it allows to perform these explorations very
fast. The simulations in this section were completed in a few minutes, as the actual
simulation was, in all cases, even faster than native execution.

6.2. Accelerator-Based Architecture Evaluation using Inout

In this section we introduce a set of experiments using the inout mode of TaskSim.
Figure 4 shows several timelines of a Fast Fourier Transform (FFT) 3D application.
Figure 4(a) is the real execution on a Cell/B.E. processor. Periods in gray represent com-
putation phases, and periods in black represent time spent waiting for data transfers to
complete. The application first performs an FFT on the first dimension of a 3D matrix.
FFT execution is computation-bound, so it is dominated by computation time (gray).
After the first FFT, it performs a transposition. The matrix transposition execution is
memory-bound, so it is dominated by waiting time (black). After the transposition, it
performs another FFT but on the second dimension, followed by a second transposition,
and, finally, another FFT on the third dimension. The five application stages are clearly
identifiable in the timeline. The second transposition takes much longer than the first
one, because data is accessed following a different pattern, which does not efficiently
use the available off-chip memory bandwidth.

Figure 4(b) shows the timeline of the simulation in TaskSim using the inout mode
with a Cell/B.E. configuration (Figure 2(b)). As can be seen, the inout mode is able to

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

Simulation of Large-Scale Architectures 36:17

Fig. 4. Inout mode experiments on scratchpad-based architectures using an FFT 3D application: (a) execu-
tion on a real Cell/B.E., (b) simulation of a Cell/B.E. configuration, (c) simulation of a Cell/B.E. configuration
using a 128-byte memory interleaving granularity, (d) simulation of a 256-core SARC architecture configura-
tion using a 4KB interleaving granularity, and (e) simulation of a 256-core SARC architecture configuration
using a 128-byte interleaving granularity. Light gray show computation periods and black shows periods
waiting for data transfer completion.

closely reproduce the behavior of the real system. In Figure 4(c), the same simulation
takes place but the off-chip memory data-interleaving granularity is set to 128 bytes
instead of the default 4 Kbytes in the real Cell/B.E. processor. The time to complete the
second transposition is then greatly shortened, resulting in a delay similar to that of
the first transposition. This is because, using a 128-byte interleaving scheme, several
DIMMs are always accessed in parallel in both transpositions, thus achieving close to
peak bandwidth efficiency, and getting a 30% reduction in total execution time.

In Figure 4(d) and Figure 4(e), the same simulations (4KB and 128B interleaving
granularities respectively) are carried out using a 256-core configuration of the SARC
architecture (Figure 2) excluding the L1 caches. Computation is now spread among
many more units, thus reducing the total execution time from 137ms to 22ms. Also,
there is much more pressure on the memory system due to more cores concurrently ac-
cessing data. Because of this high memory congestion, there is no significant difference
between the time taken by both transpositions despite the different access patterns.
However, the 4KB scheme still cannot make an efficient use of memory bandwidth.
The 128B scheme achieves much higher efficiency, and thus leads to a 67% reduction
in total execution time.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

36:18 A. Rico et al.

(a) 4KB DRAM interleaving granularity (b) 128B DRAM interleaving granularity

Fig. 5. Difference in number of misses between the mem and instr modes for different simulated configura-
tions using 4 and 32 cores, and different interleaving granularities.

This experiment shows that the problems suffered in small-scale architectures are
not necessarily the same as those in large architectures. Also, the potential solutions
do not have the same effect at different scales, so the detailed simulation of small
architectures is not sufficient for the exploration of future large architecture designs.

The experiment also shows the potential of the inout mode to quickly obtain an
understanding of the application behavior on different memory system and intercon-
nection network configurations for scratchpad-memory-based architectures. It must be
noticed that each 256-core simulation shown in this section required approximately
three minutes to complete on an Intel Core2 T9400 running at 2.53GHz.

6.3. Memory System Evaluation using Mem

The following experiments show the error incurred by using trace memory simulation
with stripped traces in the mem mode. We simulate the SMP architecture in Figure 2
in both mem and instr modes. The architecture is configured with 4 and 32 cores,
and using two different interleaving granularities for main memory: 4KB and 128B.
Figure 5 shows the percentage difference of the number of misses between the two
modes using Cholesky. The number of misses is summed for all caches in the same
level across the architecture. As is expected, the error in the L1 is small despite the
use of stripped traces. However, for the L2 and L3 levels, the error is much higher,
as the trace stripping algorithm does not account the effects on shared caches for
parallel execution on multi-cores. In any case, the error is consistently below 17% for
the different numbers of cores and hardware configurations.

For the sake of comparison, we also repeated the simulations in this section us-
ing non-stripped memory access traces. The maximum error in this case is 3%, thus
showing the inaccuracy incurred when using trace stripping. That sets once again a
trade-off between simulation speed and accuracy. On an Intel Xeon E7310 at 1.6GHz,
simulations with full traces were 2x faster than instruction-level simulation, while the
ones using stripped traces (with an 8KB filter cache) were around 20x faster, which is
consistent with the results in Section 4.

7. CONCLUSIONS

In this paper we have analyzed the use of multiple levels of abstraction in computer
architecture simulation tools as a base for simulating large-scale architectures. As part
of this analysis, we have characterized the levels of abstraction in existing simulation
environments. In simulators requiring target applications to be represented as an
instruction stream, the highest level of abstraction is functional emulation, which has

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

Simulation of Large-Scale Architectures 36:19

been shown to be more than 100x slower than native execution for the highly optimized
Simics platform.

Also, we presented a definition of multiple application representations that are more
abstract than an instruction stream, and several simulation modes implemented in
TaskSim based on these representations. The two highest-level modes in TaskSim,
burst and inout, have been shown faster than native execution and 25x slower, respec-
tively, while being more insightful than functional simulation. The burst mode has been
proven useful and accurate for scalability studies and application analysis, with an er-
ror below 8% compared to native execution. Also, we tested the utility and accuracy of
the inout mode for architectures employing scratchpad memories. The inout mode has
been validated against a real Cell/B.E. chip, showing close performance behavior, and
it is capable of simulating up to 256-core configurations in less than three minutes. Fi-
nally, we revisit trace memory simulation techniques that are incorporated in TaskSim
to provide an 18x speedup over instruction-level simulation with a maximum error of
17% on the simulation of the cache hierarchy and memory system.

ACKNOWLEDGMENTS

The authors thank Ana Bosque for her help on getting started with Simics. We also thank Nikola Puzovic,
Paul Carpenter, and the reviewers for their guidance and comments to improve the quality of this paper.

REFERENCES

2011. Mercurium Project website. https://pm.bsc.es/projects/mcxx.
2011. NANOS++ Project website. https://pm.bsc.es/projects/nanox.
AUSTIN, T., LARSON, E., AND ERNST, D. 2002. SimpleScalar: An infrastructure for computer system modeling.

Computer 35, 2, 59–67.
BADIA, R. M., LABARTA, J., GIMENEZ, J., AND ESCALÉ., F. 2003. DIMEMAS: Predicting MPI applications behavior

in Grid environments. In Proceedings of the Workshop on Grid Applications and Programming Tools.
BARKER, K. J., DAVIS, K., HOISIE, A., KERBYSON, D. J., LANG, M., PAKIN, S., AND SANCHO, J. C. 2008. Entering the

petaflop era: The architecture and performance of Roadrunner. In Proceedings of SC ’08. 1:1–1:11.
BELLENS, P., PEREZ, J. M., BADIA, R. M., AND LABARTA, J. 2006. CellSs: A Programming model for the Cell BE

architecture. In Proceedings of SC ’06. 86.
BINKERT, N. L., DRESLINSKI, R. G., HSU, L. R., LIM, K. T., SAIDI, A. G., AND REINHARDT, S. K. 2006. The M5

simulator: Modeling networked systems. IEEE Micro 26, 4, 52–60.
BLACK, B., HUANG, A. S., LIPASTI, M. H., AND SHEN, J. P. 1996. Can trace-driven simulators accurately predict

superscalar performance? In Proceedings of ICCD ’96. 478–485.
BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISERSON, C. E., RANDALL, K. H., AND ZHOU, Y. 1995. Cilk: An

efficient multithreaded runtime system. SIGPLAN Not. 30, 8, 207–216.
BOSE, P. 2011. Integrated modeling challenges in extreme-scale computing. Proceedings of ISPASS’11.
CHARLES, P., GROTHOFF, C., SARASWAT, V., DONAWA, C., KIELSTRA, A., EBCIOGLU, K., VON PRAUN, C., AND SARKAR, V.

2005. X10: An object-oriented approach to non-uniform cluster computing. In Proceedings of OOPSLA
’05. 519–538.

CHEN, J., ANNAVARAM, M., AND DUBOIS, M. 2009. SlackSim: A platform for parallel simulations of CMPs on
CMPs. SIGARCH Comput. Archit. News 37, 20–29.

DURAN, A., AYGUADÉ, E., BADIA, R. M., LABARTA, J., MARTINELL, L., MARTORELL, X., AND PLANAS, J. 2011. Ompss: A
Proposal for Programming Heterogeneous Multi-Core Architectures. Parall. Proc. Lett. 21, 2, 173–193.

GENBRUGGE, D., EYERMAN, S., AND EECKHOUT, L. 2010. Interval simulation: Raising the level of abstraction in
architectural simulation. In Proceedings of HPCA ’10. 1–12.

GONZALEZ, J., GIMENEZ, J., CASAS, M., MORETO, M., RAMIREZ, A., LABARTA, J., AND VALERO, M. 2011. Simulating
whole supercomputer applications. IEEE Micro 31, 3, 32–45.

JEFFERSON, D. R. AND SOWRIZAL, H. A. 1982. Fast concurrent simulation using the Time Warp mechanism, part
I: Local control. Rand Note N-1906AF, the Rand Corp.

KAHLE, J. A., DAY, M. N., HOFSTEE, H. P., JOHNS, C. R., MAEURER, T. R., AND SHIPPY, D. 2005. Introduction to the
Cell multiprocessor. IBM J. Res. Dev. 49, 4/5, 589–604.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

36:20 A. Rico et al.

LEE, H., JIN, L., LEE, K., DEMETRIADES, S., MOENG, M., AND CHO, S. 2010. Two-phase trace-driven simulation
(TPTS): A fast multicore processor architecture simulation approach. Softw. Pract. Exper. 40, 239–258.

LEE, K., EVANS, S., AND CHO, S. 2009. Accurately approximating superscalar processor performance from
traces. In Proceedings of ISPASS’09. 238–248.

LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY, G., WALLACE, S., JANAPA, V., AND HAZELWOOD, R. K.
2005. Pin: Building customized program analysis tools with dynamic instrumentation. In Proceedings
of PLDI ’05. 190–200.

MAGNUSSON, P. S., CHRISTENSSON, M., ESKILSON, J., FORSGREN, D., HÅLLBERG, G., HÖGBERG, J., LARSSON, F.,
MOESTEDT, A., AND WERNER, B. 2002. Simics: A full system simulation platform. IEEE Computer 35, 2,
50–58.

MARTIN, M. M. K., SORIN, D. J., BECKMANN, B. M., MARTY, M. R., XU, M., ALAMELDEEN, A. R., MOORE, K. E., HILL,
M. D., AND WOOD, D. A. 2005. Multifacet’s general execution-driven multiprocessor simulator (GEMS)
toolset. SIGARCH Comput. Archit. News 33, 4, 92–99.

MILLER, J. E., KASTURE, H., KURIAN, G., BECKMANN, N., III, C. G., CELIO, C., EASTEP, J., AND AGARWAL, A.
2009. Graphite: A distributed parallel simulator for multicores. Tech. rep. MIT-CSAIL-TR-2009-056,
Massachusetts Institute of Technology.

MOUDGILL, M., BOSE, P., AND MORENO, J. 1999. Validation of Turandot, a fast processor model for microarchi-
tecture exploration. In Proceedings of IPCCC’99. 451–457.

MUKHERJEE, S. S., REINHARDT, S. K., FALSAFI, B., LITZKOW, M., HILL, M. D., WOOD, D. A., HUSS-LEDERMAN, S.,
AND LARUS, J. R. 2000. Wisconsin wind tunnel II: A fast, portable parallel architecture simulator. IEEE
Concurrency 8, 12–20.

PERELMAN, E., HAMERLY, G., VAN BIESBROUCK, M., SHERWOOD, T., AND CALDER, B. 2003. Using SimPoint for
accurate and efficient simulation. In Proceedings of SIGMETRICS ’03. 318–319.

PUZAK, T. R. 1985. Analysis of cache replacement-algorithms. Ph.D. thesis. AAI8509594.
RAMIREZ, A., CABARCAS, F., JUURLINK, B., MESA, A., SANCHEZ, F., AZEVEDO, A., MEENDERINCK, C., CIOBANU, C., ISAZA,

S., AND GAYDADJIEV, G. 2010. The SARC architecture. IEEE Micro 30, 5, 16–29.
REINDERS, J. 2007. Intel Threading Building Blocks. O’Reilly.
RICO, A., DURAN, A., CABARCAS, F., ETSION, Y., RAMIREZ, A., AND VALERO, M. 2011. Trace-driven simulation of

multithreaded applications. In Proceedings of ISPASS’11. 87–96.
RICO, A., RAMIREZ, A., AND VALERO, M. 2009. Available task-level parallelism on the Cell BE. Scientific Pro-

gram. 17, 1-2, 59–76.
TIKIR, M. M., LAURENZANO, M. A., CARRINGTON, L., AND SNAVELY, A. 2009. PSINS: An open source event tracer

and execution simulator for MPI applications. In Proceedings of Euro-Par ’09. 135–148.
UHLIG, R. A. AND MUDGE, T. N. 1997. Trace-driven memory simulation: A survey. ACM Comput. Surv. 29,

128–170.
VEGA, A., RICO, A., CABARCAS, F., RAMÍREZ, A., AND VALERO, M. 2010. Comparing last-level cache designs for

CMP architectures. In Proceedings of IFMT ’10. 2:1–2:11.
WANG, W.-H. AND BAER, J.-L. 1990. Efficient trace-driven simulation method for cache performance analysis.

In Proceedings of SIGMETRICS’90. 27–36.
WENISCH, T. F., WUNDERLICH, R. E., FALSAFI, B., AND HOE, J. C. 2005. TurboSMARTS: accurate microarchitecture

simulation sampling in minutes. In Proceedings of SIGMETRICS ’05. 408–409.
WUNDERLICH, R. E., WENISCH, T. F., FALSAFI, B., AND HOE, J. C. 2003. SMARTS: Accelerating microarchitecture

simulation via rigorous statistical sampling. In Proceedings of ISCA ’03. 84–97.
YI, J. J., EECKHOUT, L., LILJA, D. J., CALDER, B., JOHN, L. K., AND SMITH, J. E. 2006. The future of simulation: A

field of dreams. Computer 39, 22–29.

Received July 2011; revised October 2011; accepted November 2011

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 36, Publication date: January 2012.

