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ABSTRACT
We propose the hybrid dataflow/von Neumann vector
graph instruction word (VGIW) architecture. This data-
parallel architecture concurrently executes each basic
block’s dataflow graph (graph instruction word) for a
vector of threads, and schedules the different basic blocks
based on von Neumann control flow semantics. The
VGIW processor dynamically coalesces all threads that
need to execute a specific basic block into a thread vec-
tor and, when the block is scheduled, executes the en-
tire thread vector concurrently. The proposed control
flow coalescing model enables the VGIW architecture
to overcome the control flow divergence problem, which
greatly impedes the performance and power efficiency
of data-parallel architectures. Furthermore, using von
Neumann control flow semantics enables the VGIW ar-
chitecture to overcome the limitations of the recently
proposed single-graph multiple-flows (SGMF) dataflow
GPGPU, which is greatly constrained in the size of
the kernels it can execute. Our evaluation shows that
VGIW can achieve an average speedup of 3× (up to
11×) over an NVIDIA GPGPU, while providing an av-
erage 1.75× better energy efficiency (up to 7×).

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture
Styles — dataflow architectures

Keywords
SIMD, GPGPU, dataflow, reconfigurable architectures

1. INTRODUCTION
The popularity of general purpose graphic processing
units (GPGPU) can be attributed to the benefits of
their massively parallel programming model, and to their
power efficiency in terms of floating point operations
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(FLOPs) per watt. These benefits are best attested to
by the fact that 9 out of the top 10 most power-efficient
supercomputers employ NVIDIA or AMD GPGPUs [1,
2]. Yet despite their superior power efficiency, GPG-
PUs still suffer from inherent inefficiencies of the un-
derlying von Neumann execution model. These include,
for example, the energy spent on communicating in-
termediate values across instructions through a large
register file, and the energy spent on managing the in-
struction pipeline (fetching, decoding, and scheduling
instructions). Recent studies [3, 4] estimate that the
pipeline and register file overheads alone account for
∼30% of GPGPU power consumption.
As an alternative to von Neumann GPGPUs, Voitse-
chov and Etsion [5] recently proposed the Single-Graph
Multiple-Flows (SGMF) dataflow GPGPU architecture.
The SGMF architecture introduces the multithreaded
coarse-grained reconfigurable fabric (MT-CGRF) core,
which can concurrently execute multiple instances of
a control and dataflow graph (CDFG). The MT-CGRF
core eliminates the global pipeline overheads and, by di-
rectly communicating intermediate values across func-
tional units, eliminates the need for a large register file.
Furthermore, the underlying dataflow model enables the
core to extract more instruction-level parallelism (ILP)
by allowing different types of functional units to execute
in parallel (e.g., all FP and all LD/ST units).
The SGMF architecture, however, is limited by the static
mapping of a kernel’s CDFG to the MT-CGRF core and
cannot execute large CUDA kernels efficiently. First,
the limited capacity of the MT-CGRF core cannot host
kernels whose CDFG is larger than the reconfigurable
fabric. Second, as all control paths through a kernel’s
CDFG are statically mapped to the MT-CGRF, the
core’s functional units are underutilized when execut-
ing diverging control flows.
In this paper, we propose the hybrid dataflow/von Neu-
mann vector graph instruction word (VGIW) architec-
ture for GPGPUs. Like a dataflow machine, VGIW
represents basic blocks as dataflow graphs (i.e., graph
instruction words) and concurrently executes each block
for a vector of threads using the MT-CGRF core. Like a
von Neumann machine, threads’ control flows determine
the scheduling of basic blocks. This hybrid model en-
ables the architecture to dynamically coalesce all threads
that are about to execute a basic block into a thread
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Figure 1: Illustration of the runtime benefits provided by control flow coalescing. The VGIW model
enjoys the performance and power benefits of dataflow execution while eliminating the resource
underutilization caused by control divergence.

vector that is executed concurrently. The VGIW archi-
tecture thus preserves the performance and power effi-
ciency provided by the dataflow MT-CGRF core, enjoys
the generality of the von Neumann model for partition-
ing and executing large kernels, and eliminates ineffi-
ciencies caused by control flow divergence.
Control flow coalescing requires that the architecture
communicate live, intermediate values across basic blocks.
The VGIW architecture provides this functionality us-
ing a live value cache (LVC). The LVC functionality
resembles that of a register file. But since instruc-
tion dependencies are typically confined inside a basic
block, most intermediate values are communicated di-
rectly through the MT-CGRF, and the LVC only han-
dles a small fraction of inter-instruction communication.
We implemented the architecture using GPGPUSim [6]
and GPGPUWattch [4], and evaluated it using ker-
nels from the Rodinia benchmark suite [7]. In order to
model the architecture’s performance and power prop-
erties, we implemented its key components in RTL and
synthesized them using a commercial cell library. Our
results show that the VGIW architecture outperforms
the NVIDIA Fermi architecture by 3× on average (up
to 11×) and provides an average 1.75× better energy
efficiency (up to 4.3×).
This paper makes the following contributions:
• Introducing the hybrid dataflow/von Neumann vector-

graph instruction word (VGIW) architecture for
GPGPUs.
• Introducing the control flow coalescing execution

model, which overcomes control flow divergence
across data-parallel threads.
• Evaluating a VGIW processor using CUDA kernels

from the Rodinia benchmark suite.
The rest of this paper is organized as follows: Section 2
introduces the abstract VGIW machine and execution
model, followed by a detailed description of the architec-
ture in Section 3. Section 4 describes our experimental
methodology, and Section 5 discusses the evaluation re-
sults. Finally, we discuss related work in Section 6 and
conclude in Section 7.

2. CONTROL FLOW DIVERGENCE AND
THE VGIW EXECUTION MODEL

The control flow divergence problem, in which data-
parallel threads take different paths through the ker-
nel’s control flow graph, is known to affect the utiliza-
tion of data-parallel architectures. Specifically, the exe-
cution resources that are assigned to diverging threads
whose control flow bypasses the currently executing ba-
sic block are wasted.
Figure 1 illustrates how control divergence in a simple
nested conditional statement (Figure 1a) impacts con-
temporary von Neumann GPGPUs, the SGMF data-
parallel dataflow architecture [5], and the proposed VGIW
design. For brevity, we only show the execution of
the kernel on eight threads, whose control flow diverges
asymmetrically: threads 1,3,8 execute basic blocks BB1,
BB2 and BB6, threads 2,7 execute basic blocks BB1,
BB3, BB4 and BB6 while threads 4–6 execute basic
blocks BB1, BB3, BB5 and BB6.
Von Neumann GPGPUs execute groups of threads (warps)
in lockstep. When the control flow of threads in a group
diverges, the GPGPU applies an execution mask to dis-
able lanes (functional units) associated with threads
that need not execute the scheduled instruction. As
a result, the runtime of threads on a von Neumann
GPGPU is composed of the execution time of both
taken and non-taken control paths. Figure 1b illus-
trates this phenomenon. The lanes allocated to threads
2,4–7 are disabled when block BB2 executes. Con-
versely, when block BB3 executes, all lanes associated
with threads 1,3,8 are disabled. The utilization further
drops when dealing with nested conditionals and, when
executing BB4, all lanes associated with threads 1,3–6,8
are disabled; the same goes for threads 1–3,7–8 when
executing BB5. Even though the issue of control diver-
gence has been studied extensively (e.g., [8–12]), it still
impacts the performance of contemporary GPGPUs.
Control flow divergence also degrades the power effi-
ciency of the recently proposed SGMF dataflow GPGPU.
The SGMF processor maps all the paths through a con-
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Figure 2: The VGIW machine state throughout the execution of the control flow depicted in Figure 1a.

Figure 3: The number of accesses to the LVC as
a fraction of the number of accesses to a GPGPU
RF for the kernels evaluated in the paper.

trol flow graph onto its MT-CGRF core, as depicted
in Figure 1c. The processor thus effectively executes
all thread control flows in parallel. While this method
prevents branch divergence from increasing thread run-
time, it affects the utilization of its computational re-
sources. Ultimately, even though the dataflow SGMF
processor delivers substantial performance speedups com-
pared to a von Neumann GPGPU, its efficiency is greatly
affected by control flow divergence.
We propose to overcome the control flow divergence
problem using control flow coalescing, which aggregates
all threads waiting to execute a basic block. This exe-
cution model, which executes only the blocks needed by
each thread, eliminates the loss of both cycles and ex-
ecution resources due to branch divergence. Figure 1d
illustrates the proposed model. For example, it shows
how BB3 is executed only by threads 2 and 4–7. It fur-
ther demonstrates how multiple replicas of BB3 can be
mapped to the MT-CGRF core to maximize the utiliza-
tion of the fabric and accelerate the execution. The rest
of this section introduces the VGIW machine model and
discusses how its hybrid dataflow/von Neumann execu-
tion model facilitates control flow coalescing.

The VGIW machine model
The vector graph instruction word (VGIW) execution
model dynamically coalesces all (possibly divergent) threads
that need to execute the same basic block into a thread

vector. When a basic block is scheduled to execute on
the MT-CGRF core (by loading its dataflow graph), it
is applied to the vector of all threads (typically hun-
dreds and thousands) waiting to execute it. The thread
vector of each block is constructed during the execu-
tion of prior basic blocks, as each thread that executes
a basic block adds itself to the thread vector of the next
block it needs to execute. The vector also comprises
threads that reached it via different control flows.The
hybrid VGIW machine thus enjoys the performance and
power efficiency of the dataflow model and the gener-
ality of the von Neumann model, but without suffering
performance degradation due to control divergence.
Figure 2 depicts an abstract VGIW machine (and the
execution flow of a simple kernel). The machine con-
sists of a multithreaded, coarse-grain reconfigurable fab-
ric (MT-CGRF) execution core, a control vector cache,
a live value cache, and a basic block scheduler.

Multithreaded, Coarse-Grain Reconfigurable Fabric.
The MT-CGRF core executes multiple instances of a
dataflow graph with high performance and low power
characteristics [5]. The core comprises a host of in-
terconnected functional units (e.g., arithmetic logical
units, floating point units, load/store units). Its archi-
tecture is described in Section 3.5. The core employs dy-
namic, tagged-token dataflow [13, 14] to prevent mem-
ory stalled threads from blocking other threads, thereby
maximizing the utilization of the functional units.
Prior to executing a basic block, the functional units
and interconnect are configured to execute a dataflow
graph that consists of one or more replicas of the ba-
sic block’s dataflow graph. Replicating the basic block’s
dataflow graph enables the architecture to better utilize
the MT-CGRF grid. The configuration process itself,
described in Section 3.2, is lightweight and has negli-
gible impact on system performance. Once configured,
threads are streamed through the dataflow core by in-
jecting their thread identifiers and CUDA ThreadIDX
coordinates into special control vector units. When those
values are delivered as operands to successor functional



units, they initiate the thread’s computation, following
the dataflow firing rule. A new thread can thus be in-
jected into the computational fabric on every cycle.

Control Vector Table (CVT). The CVT maintains a
list of threads whose control flow has reached a basic
block in the kernel. When that basic block is scheduled
for execution and the MT-CGRF core has been con-
figured with its dataflow graph, all its pending threads
are streamed through the core. The table is updated dy-
namically. When the core finishes executing a thread’s
current basic block and its next basic block is deter-
mined, the core adds the thread’s identifier to the des-
tination block’s entry in the table.

Live Value Cache (LVC). The LVC stores intermedi-
ate values that are communicated across basic blocks.
The compiler statically allocates IDs for live values that
are generated by one block and consumed by another.
Although the LVC’s functionality is analogous to that of
a register file, it is accessed much less frequently. This
is because most intermediate values are confined to a
basic block and are communicated directly through the
MT-CGRF core. Only the small fraction of intermedi-
ate values that need to be communicated across basic
blocks must be stored in the LVC.
Figure 3 depicts this difference in access frequency. It
illustrates the number of times the LVC is accessed by
the MT-CGRF core (which may host multiple replicas
of the dataflow graph) as a fraction of the number of
times a GPGPU register file is accessed for the same ker-
nel (counting a single access for an entire warp). The
figure shows that the LVC is accessed on average al-
most 10× less frequently than a GPGPU register file.
The difference in access frequency provides the design
and execution flexibility that is paramount to the con-
trol flow coalescing execution model. In particular, it
decouples the grouping of threads from any restrictions
that may be imposed by the layout of their intermedi-
ate values inside the LVC. For example, it allows the
LVC to be accessed at word granularity, in contrast to
a GPGPU’s vector register file.
This design flexiblity makes it possible to implement
the LVC using a cache structure and allows live values
to be spilled to memory. This is necessary due to the
large storage footprint of all the threads’ live values, as
each kernel may require dozens of live values, and the
core may concurrently execute thousands of threads.
All live values are thus mapped to memory as a two-
dimensional array that is indexed by the live value ID
(row) and thread ID (column). The LVC caches the live
value array. It is backed by the L2 cache and accessed
using the live value ID and thread ID.

Basic Block Scheduler (BBS). The BBS schedules ba-
sic blocks (or dataflow graphs thereof) on the MT-CGRF
core. Once the block is selected, the scheduler config-
ures the MT-CGRF core with its dataflow graph and
begins streaming the pending threads through the core.

Control flow coalescing on a VGIW machine
Figure 2 illustrates control flow coalescing by describing
the step-by-step execution of a simple divergent kernel
(depicted in Figure 1a). For brevity, we illustrate the
execution of the kernel on eight threads only.
As all threads begin with the execution of the kernel’s
entry basic block, BB1, the block’s execution is coalesced
(Figure 2a). When each thread completes the execution
of BB1, it registers the next block on its control path
in the control vector table. After block BB1 completes
executing all threads (Figure 2b), their control flow di-
verges. Threads 1,3,8 are registered to execute block
BB2, whereas threads 2,4-7 are registered to execute
BB3. The scheduler then selects block BB2 for exe-
cution. It configures the MT-CGRF core with BB2’s
dataflow graph and streams threads 1,3,8 through the
core. When the threads complete their execution (Fig-
ure 2c), they all register to execute block, BB6. Next,
block BB3 is selected and configured, and threads 2,4–7
are streamed through the core. When the block com-
pletes (Figure 2d), the control flow diverges again as
threads 2,7 register to execute BB4 and threads 4-6 reg-
ister to execute BB5. After executing BB4 (Figure 2e)
and BB5 (Figure 2f), all the threads converge back to
execute the kernel’s exit block BB6.
Control flow coalescing enables the VGIW architecture
to better utilize its execution resources. As Figure 1d
illustrates, VGIW dynamically forms thread vectors, or
warps, that consist of all threads that reached a specific
basic block, and only executes the block for its thread
vector. Since the execution model targets massive par-
allelism, the time spent executing each basic block is
linear with the size of its thread vector. Importantly,
thread grouping does not depend of the control path
that each individual thread took to reach a given block,
and each thread vector may represent multiple control
paths. As a result, the number of reconfiguration de-
pends on the number of basic blocks rather than the
number of diverging control paths through the kernel.
Given that VGIW is tuned to massive parallelism (as
are GPGPUs), thread vectors are typically large.
Reconfigurations of the MT-CGRF core are, therefore,
infrequent, and the optimized reconfiguration process
only incurs a negligible overhead. In our prototype, for
example, reconfiguration only takes 34 cycles, as de-
scribed in Section 3.2. Consequently, the hybrid design
outperforms other GPGPU designs while preserving the
generality of the von Neumann model.
Replicating the dataflow graph of individual basic blocks
across the MT-CGRF grid is another key contributor to
the performance of the VGIW model. The replication
multiplies the core’s throughput and greatly reduces the
execution time of a basic block’s thread vector.
Notably, although we only illustrate the execution model
using a simple example, the block-by-block execution
naturally supports loops. When executing a loop, the
threads that need to iterate through the loop are added
to the thread vector of the first basic block in the loop
body, whereas threads that exit the loop are added to
the thread vector of the loop’s epilogue basic block.



3. THE VGIW ARCHITECTURE
This section presents the hybrid dataflow/von Neumann
VGIW architecture and its individual components.
The organization of the VGIW architecture is shown in
Figure 4, which also illustrates the high-level interac-
tions between the different components. As described
in the abstract machine model (Section 2), the archi-
tecture is composed of a basic block scheduler (BBS),
a control vector table (CVT), a live value cache (LVC),
and an MT-CGRF execution core. A VGIW processor
core is connected to a conventional GPGPU memory
system through a banked L1 cache.

3.1 Compiling for VGIW
The VGIW compiler partitions a CUDA kernel into
basic blocks, generates a control flow graph, and de-
termines the scheduling of basic blocks. The schedule
preserves control dependencies, and each block is as-
signed a unique block ID based on the scheduling or-
der. Each block encodes the block IDs of its successor
blocks (up to two), and loops manifest when the block
ID of the successor is smaller than that of the original
block. This scheduling scheme simplifies the runtime
(hardware) scheduler, which simply selects the smallest
block ID whose thread vector is not empty. The com-
piler generates a control flow graph with a single entry
point by generating an entry basic block. The entry
block uses the reserved block ID 0, which guarantees
that all threads execute it first.
The compiler assigns a live value ID for each interme-
diate value that crosses block boundaries and encodes
the IDs in the respective blocks’ dataflow graphs. The
mapping process is similar to traditional register allo-
cation, and threads access the LVC using the live value
ID and the thread ID.
Finally, each basic block is converted into a dataflow
graph and undergoes a place and route sequence to gen-
erate a static per-block configuration of the MT-CGRF
core. For small basic blocks, the compiler includes mul-
tiple replicas of a block’s graph in the generated config-
uration. This maximizes the core’s utilization and in-
creases thread-level parallelism, as shown in Figure 1d.

3.2 Basic block scheduler (BBS)
The basic block scheduler (BBS), depicted in Figure 5,
controls the kernel’s execution by selecting the next ba-
sic block to execute, configuring the MT-CGRF core to
run it, and sending thread IDs to the core. The sched-
uler also serves as a frontend to the CVT. The BBS
reads basic block vectors from the CVT to send them
to the core and, conversely, updates the block vectors
in the CVT based on the resolved branch information
it receives from the MT-CGRF core.
The finite size of the CVT imposes a limit on the num-
ber of threads that can be tracked at any given time.
The number of live threads is thus limited by tiling their
execution, and the BBS sets the tile size based on the
number basic blocks in the kernel:

tile size = CV T size
#basic blocks×#CUDA threads .

To execute a kernel, the runtime software loads its basic

block sequence to the BBS, along with the per-block
configuration of the MT-CGRF core. The runtime then
signals the BBS to set all bits in the entry block vector
(block ID 0). Finally, the BBS begins sending batches
of thread IDs to the core for execution (thread batches
are analogue to warps on regular GPGPUs).
Thread batches are sent as 〈base threadID, bitmap〉 tu-
ples, where base thread ID represents the first thread
in the batch (first bit in the bitmap), and the bitmap
indicates which of the consecutively subsequent IDs are
scheduled to execute the current basic block. Each
packet consists of a 16-bit thread ID and a 64-bit bitmap.
When the BBS sends a thread batch packet to the core,
it zeros the corresponding bits in the CVT. Conversely,
when a batch of threads finish a basic block, the core
sends the BBS two batch packets, one for each of the
block’s successors. The BBS updates the CVT by OR-
ing the bitmaps received from the core with the existing
data in the CVT. An OR operation is required since a
block may be reached by multiple control flows.
During the execution of a block, the BBS prefetches
the configurations of the following blocks into a con-
figuration FIFO. Once the execution of all threads in
the current block completes, a reset signal is sent to
the nodes in the grid. The reset clears the nodes and
configures the switches to pass tokens from left to right.
The BBS then feeds the configuration tokens to the grid
from its left perimeter. This process takes 11 cycles
sqrt(#nodes) and is performed twice to deliver all the
configuration data. For the kernels evaluated in this pa-
per, the total configuration overhead averaged at 0.18%
of the runtime with a median lower than 0.1%.

3.3 Control vector table (CVT)
The CVT is depicted in Figure 2. It associates each ba-
sic block ID with a bit vector that is indexed by thread
IDs. A set bit indicates that the corresponding thread
ID should execute that basic block next. Naturally, a
thread ID’s bit can only be set in one of the table entries
at any given time. The CVT delivers 64-bit words.
The BBS may access the CVT with both reads and
writes in the same cycle. The CVT thus provides both
read and write ports. The structure uses a read-and-
reset policy that resets words when they are read. This
design is used to avoid adding an extra write port. Since
a dataflow graph may be replicated in the MT-CGRF
core, the BBS may need to perform multiple read/write
operations per cycle. The CVT structure is thus parti-
tioned into 8 banks to facilitate ample parallelism.

3.4 Live value cache (LVC)
The LVC stores live values that are transfered across
executed basic blocks. The LVC caches a memory res-
ident, two-dimensional matrix that maps all live val-
ues and is indexed by 〈live valueID, threadID〉 tuples.
Live value IDs are set at compile time, while thread
IDs are determined at runtime and are sent between
MT-CGRF functional units as part of each data token.
The LVC is implemented as a banked cache (similar to
a GPGPU L1 design [15] and is backed by the memory



Figure 4: The VGIW core. Components that do not exist in the SGMF design are marked with ∗.

system (L2 cache, main memory). This design simplifies
the management of the LVC since it supports spilling
intermediate values to memory if the LVC is contended
(although this is generally prevented by thread tiling).
For brevity, we do not present a full design space explo-
ration of the LVC size and only show results for a 64KB
LVC. In comparison, this size is 4× smaller than the reg-
ister file on the NVIDIA Fermi GPGPU. Together with
the total capacity of the MT-CGRF core buffers, which
is 70% smaller than the RF on an NVIDIA Fermi [5],
the total amount of the VGIW in-core storage is 2×
smaller than the NVIDIA Fermi RF.

3.5 The MT-CGRF execution core
The MT-CGRF execution core comprises a grid of inter-
connected functional units that communicate using data
and control tokens. The grid is configured with a basic
block’s dataflow graph; it can then concurrently stream
multiple instances (threads) of the said graph. The core

combines pipelining, or static dataflow [16], to extract
parallelism inside a thread, and out-of-order execution
(or dynamic dataflow [13, 14]) across threads to enable
threads that stall on cache misses to be passed over by
unblocked threads. The MT-CGRF design extends the
original CGRF dataflow core proposed by Voitsechov
and Etsion [5]. This section discusses the core’s design
and inner workings (a more comprehensive discussion
can be found in the original SGMF paper [5]).
Each unit in the MT-CGRF fabric includes a token
buffer and a statically reconfigurable switch that con-
nects the unit to eight neighboring units. The token
buffer enables each unit to be multiplexed among dis-
tinct threads. Functional units are multiplexed using
virtual execution channels, which operate in a manner
similar to virtual network channels. Each entry in the
token buffer stores the operands needed for the unit to
execute (up to three operands). When all the operands
in an entry are available, it is marked as ready and



Figure 5: The basic block scheduler (BBS). A
kernel is loaded to the BBS as a sequence of basic
block IDs. The BBS then schedules the blocks
dynamically based on the kernel’s control flow.

will be executed. The index of each entry in the token
buffer associates it with a virtual execution channel.
Each thread that is streamed through the core is as-
signed a virtual channel ID, and the thread’s data and
control tokens use that ID to index the token buffer in
the destination unit. Consequently, each token buffer
entry serves a distinct thread and, when the entry is
marked ready, the functional unit executes its precon-
figured operation using the thread’s operands.
The direct communication of intermediate values across
functional units eliminates the need for a central regis-
ter file, which has been shown to be a major power
bottleneck in GPGPUs [3, 4]. Only intermediate val-
ues that are communicated across basic blocks (namely
those whose lifetime extends that of their originating
basic block) are stored in temporary storage — the LVC.
The different functional units contain configuration reg-
isters that carry the opcode they need to execute, along
with any static parameters. The configuration registers
are initialized every time a kernel is loaded to the ex-
ecution core. To accelerate this process, configuration
messages are sent along each row in the grid, reduc-
ing the configuration time to O(

√
(N)), where N is the

number of functional units in the grid.
Finally, another common VGIW optimization is basic
block replication. As the size of basic blocks’ control
flow graphs is often smaller than the number of units in
the MT-CGRF core, the compiler maximizes the core’s
utilization and throughput by mapping multiple repli-
cas of a basic block to the core.
The rest of this section discusses the core’s six types of
functional units and its interconnect: 1. Compute units
(FP-ALU). 2. Load/store units (LDSTU). 3. Split/join
units (SJU) . 4. Special compute units (SCU). 5. Live
value load/store units (LVU). 6. Control vector units
(CVU). The circled numbers correspond to the func-
tional units as illustrated in Figure 4.

Compute units 2 . Each compute unit merges a float-
ing point unit (FPU) and an arithmetic logic unit (ALU).
The unified unit is configured by a single op-code. Merg-
ing an ALU and an FPU into a single unit saves 10% in

power and 13% in area. All the instructions supported
by the unit are pipelined, so it can process a new set of
tokens at each cycle. All the non-pipelined components
are clustered into the SCUs described below.

Load/store units 1 . Load/store units (LDSTU) con-
nect the MT-CRGF to the memory system through the
L1 cache. The units are located on the grid perimeter
and are connected to the banked L1 cache through a
crossbar switch. Each LDSTU includes a reservation
buffer that enables threads to execute out-of-order us-
ing dynamic dataflow. The buffer maintains the thread
IDs associated with active memory operations. When
an operation completes, the unit that maps the suc-
cessor node in the dataflow graph is signaled (using a
data token) that the operand of the unblocked thread is
ready. By enabling threads to execute out-of-order and
overtake blocked ones, the reservation buffers greatly
improve the utilization of the MT-CRGF.

Split/join units. The split/join units (SJUs) provide
two, reciprocal functionalities. The split functionality
sends a single input operand to multiple successor units;
it is used to extend nodes with large fanouts that are
limited by the interconnect. The join functionality, in
contrast, provides a primitive that preserves the order-
ing of memory operations inside each thread (memory
operations issued from distinct threads can be safely
reordered since threads are data-parallel). A join op-
eration waits for control tokens sent from predecessor
nodes and, once those arrive, sends a control token to
one or more successor nodes. For example, a store op-
eration must not be issued before all loads that pre-
cede it in the original program order have completed
(write-after-read). A join operation is thus placed in
the dataflow graph between the store and its preceding
loads. Only when the join receives control tokens from
all preceding loads does it send a token to the successor
store operation, and allows it to fire.

Special compute units 5 . The special compute units
(SCUs) provide virtual pipelining for non-pipelined arith-
metic and floating point operations (e.g., division, square-
root). These units are composed of multiple instances
of the circuits that implement the non-pipelined oper-
ations. When a new operation is issued, the unit se-
lects an available instance to execute the operation. The
units thus enable a new non-pipelined operation to be-
gin execution on each cycle. Notably, the SCUs do not
consume additional space compared to regular GPG-
PUs, since the compute units in the MT-CRGF core do
not include any non-pipelined elements. SCUs thereby
aggregate the non-pipelined elements that are available
on each ALU/FPU on regular GPGPUs.

Live value load/store units 3 . The LVUs store and
retrieve intermediate values to/from the LVC. A con-
figuration register inside each LVU stores the live value
ID that the unit addresses. As discussed above, LVUs
access the LVC using 〈live valueID, threadID〉 tuples.
The LVUs are located on the perimeter of the MT-
CRGF core, alongside the LDSTU.



Figure 6: The control vector unit (CVU) when functioning as a thread initiator/terminator.

Control vector units 4 . Each CVU can function both
as a thread initiator or as a thread terminator (Fig-
ure 6). Each replica of a basic block’s dataflow graph is
assigned an initiator CVU and a terminator CVU.
When functioning as a thread initiator, the CVU re-
ceives thread batches from the BBS. It then computes
the CUDA ThreadIDX coordinates for the initiated threads
and sends them to its successor nodes. Following the
dataflow firing rule, once the successor nodes receive
their respective coordinates, they execute. When a ba-
sic block is replicated in the MT-CRGF (which is often
used by the compiler to maximize the core’s utilization),
each replica is assigned an initiator CVU.
As described in Section 3.2, thread batches are com-
municated as 〈basethreadID, bitmap〉 tuples. When a
batch arrives, the CVU begins looping over the bitmap
to identify the thread IDs it should initiate (by adding
the set bits’ indices to the base thread ID). To avoid
stalls, CVUs use double buffering of thread batches.
Whenever a batch is received, the CVU immediately
requests the next batch from the BBS.
Conversely, when a CVU functions as a thread termi-
nator, it executes the basic block’s terminating branch
instruction to determine the next basic block that the
thread should execute. The destination block IDs (up to
two) are stored in the CVU’s configuration register. At
runtime, the input token to the CVU determines which
of the two targets should be executed next. The CVU
maintains two thread batches, one for each possible tar-
get block ID and adds each thread to the batch that
corresponds with its branch outcome. Notably, since
threads are executed out-of-order, thread IDs from dif-
ferent batches may be interleaved. To support threads
that complete out-of-order, the CVU maintains a pair
of thread batches for each destination block ID. Once

the CVU encounters a thread ID from a different batch,
it sends the current (possibly partial) batch to the BBS.
In total, a CVU maintains storage for four batches (only
two are used when functioning as a thread initiator).
Each batch is maintained using an 80-bit register (16-
bit thread ID + 64-bit bitmap), for a total of 320 bits.

Interconnect. The topology of the interconnect is de-
signed to meet three key requirements: a hop latency
of one cycle; reducing the number of hops between non-
adjacent units; and equalizing the connectivity of the
perimeter units (LDSTU and the LVUs) to that of the
units inside the grid. To meet these requirements, the
interconnect uses a folded hypercube topology [17]. Each
functional unit is connected to its four nearest units and
four nearest switches. The switches are also connected
to the four switches with a Manhattan distance of two.
This topology equalizes the connectivity on the perime-
ter and reduces the average number of hops between
functional units. Finally, the topology is known to scale
with the size of the grid.

3.6 The memory system
The memory system of the VGIW is almost identical to
that used by the NVIDIA Fermi. A VGIW core has a
64KB, 32-bank L1 cache (with 32 banks), a 768KB, 6-
bank L2 cache, and a 16-bank, 6-channel GDDR5 main
memory. The only difference between the memory sys-
tems is that the VGIW caches use a write-back policy
instead of Fermi’s write-through policy.

4. METHODOLOGY
The amount of logic that is found in a VGIW core is ap-
proximately the same amount that is found in a Nvidia
SM and in a SGMF core. In a Nvidia SM, that logic



Parameter Value

VGIW Core 108 interconnected
func./LDST/control units

Functional units 32 combined FPU-ALU units
12 Special Compute units

Load/Store units 16 Live Value Units
16 regular LDST units

Control units 16 Split/Join units
16 Control Vector Units

Frequency [GHz] core 1.4, Interconnect 1.4
L2 0.7, DRAM 0.924

L1 64KB, 32 banks, 128B/line, 4-way
L2 786KB, 6 banks, 128B/line, 16-way
GDDR5 DRAM 16 banks, 6 channels

Table 1: VGIW system configuration.

assembles 32 CUDA cores, while in the VGIW core
the CUDA cores are broken down into smaller coarse
grained blocks. The breakdown to smaller granularity
enables greater parallelism and increases performance.

RTL Implementation. We implemented the major com-
ponents of the VGIW architecture in Verilog (including
the interconnect) to evaluate their power, area and tim-
ing. The design was synthesized using the Synopsys
toolchain and a commercial 65nm cell library, and the
results were then extrapolated for a 40nm process.

Simulation framework. We used the GPGPU-Sim sim-
ulator [6] and GPUWattch [4] power model (which uses
performance monitors to estimate the total execution
energy) to evaluate the performance and power of the
VGIW design. These tools model the Nvidia GTX480
card, which is based on the Nvidia Fermi. We ex-
tended GPGPU-Sim to simulate a VGIW core and, us-
ing per-operation energy estimates obtained from the
RTL place&route results, we extended the power model
of GPUWattch to support the VGIW design.
The system configuration is shown in Table 1. By re-
placing the Fermi SM with a VGIW core, we retain the
uncore components. The only difference between the
processors’ memory systems is that VGIW uses write-
back and write-allocate policies in the L1 caches, as op-
posed to Fermi’s write-through and write-no-allocate.

Compiler. We compiled CUDA kernels using LLVM [18]
and extracted their SSA [19] code. This was then used
to configure the VGIW grid and interconnect.

Benchmarks. We evaluated the VGIW architecture
using kernels from the Rodinia benchmark suite [7],
listed in Table 2. Importantly, the benchmarks were
used as-is and are optimized for SIMT processors.

5. EVALUATION
This section evaluates the performance and power effi-
ciency of the VGIW architecture and compares them to
those delivered by NVIDIA Fermi and an SGMF core.

Performance analysis.
Figure 7 shows the speedup achieved by a VGIW core
over a Fermi SM. Results range between 0.9× (slow-
down) and 11× speedup, with an average of over 3×.

Figure 7: Speedup of VGIW over a Fermi.

Figure 8: Speedup of VGIW over SGMF.

Although the kernels’ performance depends on their
particular features, the average 3× speedup corresponds
to the increased ILP delivered by the spatial VGIW
core. While the Fermi’s von Neumann design can only
operate 32 of its functional units concurrently (leaving
the rest idle), the VGIW spatial design can operate all
its 108 functional units concurrently.
When examining the results, we divide the kernels into
two main categories: computational kernels and mem-
ory bound kernels. The VGIW architecture is highly ef-
ficient for multithreaded computational kernels, which
benefit from the increased ILP delivered by the spa-
tial design. Memory bound kernels, on the other hand,
do not fully utilize the grid, and VGIW delivers per-
formance comparable to that of a GPGPU. Occasion-
ally, memory intensive kernels that are optimized for
GPGPUs will exhibit slowdown on our system, e.g., the
CFD3 kernel that simply moves data from one array to
another. Even though VGIW does not perform mem-
ory coalescing, its high ILP and inter-thread dynamic
dataflow help mask the latencies caused by the cache
bank conflicts. We leave the exploration of methods for
memory coalescing on MT-CGRFs for future work.
Figure 8 shows the speedup achieved by the VGIW ar-
chitecture over the SGMF design. Since the SGMF ar-
chitecture maps the entire kernel into the MT-CGRF
grid, it can only execute small to medium kernels with
simple control flows. The comparison is thus based
on the subset of kernels that can be mapped to the
SGMF cores. The figure shows that the performance of
VGIW is comparable to that of SGMF. While the aver-
age speedup is better than 1.45×, that of the individual
kernels varies between 0.4× and 3.1×. SGMF excels
with kernels characterized by small basic blocks and a
small amount of branch divergence. For these kernels,
the overheads of the grid reconfiguration and live value
storage thwart the utilization gains of the VGIW.



Application Application Domain Kernels (#basic blocks) Description
BFS Graph Algorithms Kernel(8) ,Kernel2(3) Breadth-first search
KMEANS Data Mining invert mapping(3) Clustering algorithm
CFD Fluid Dynamics compute step factor(2) ,initialize variables(1) Computational fluid dynamics

time step(1) ,compute flux(12) solver
LUD Linear Algebra lud internal(3), lud diagonal(11), lud perimiter(22) Matrix decomposition
GE Linear Algebra Fan1(2) ,Fan2(5) Gaussian elimination
HOTSPOT Physics Simulation hotspot kernel(27) Thermal simulation tool
LAVAMD Molecular Dynamics kernel gpu cuda(21) Calculation of particle position
NN Data Mining euclid(2) K nearest neighbors
PF Medical Imaging normalize weights kernel(5) Particle filter (target estimator)
BPNN Pattern Recognition adjust weights(3) ,layerforward(20) Training of a neural network
NW Bioinformatics needle cuda shared 1(13), needle cuda shared 2(13) Comparing biological sequences
SM Data Mining streamcluster kernel compute cost(6) Clustering algorithm

Table 2: A short description of the benchmarks that was used to evaluate the system

Figure 9: Energy efficiency of a VGIW core over
a Fermi SM.

Energy efficiency analysis.
In this section we compare the energy efficiency of the
evaluated architectures. Our evaluation compares the
total energy required to do the work, namely execute
the kernel, since the different architectures use different
instruction set architectures (ISAs) and execute a dif-
ferent number of instructions for the same kernel. We
therefore define power efficiency as:

performance
watt = work

time /
energy
time = work

energy .

Figure 9 shows that the VGIW architecture is 1.75×
(∼40%) more energy efficient, on average, than the base-
line Fermi architecture. The figure shows that the effi-
ciency of different kernels varies between 0.7× and 7×.
The figure also shows a strong correlation between a
kernel’s characteristics and its energy efficiency bene-
fits, indicating that computational kernels execute much
more efficiently on the VGIW architecture.
Figure 10 compares the energy efficiency of the VGIW
and Fermi architectures at the level of the entire system
(core, L1 and L2 caches, memory controller/interconnect
and DRAM), die (core, L1 and L2 caches and memory
controller/interconnect), and core (compute engine). The
energy of the VGIW core includes the energy spent on
the LVC and CVT, and that of Fermi includes the reg-
ister file. The figure demonstrates that the improved
efficiency of VGIW is attributed its efficient compute-
engine. It also motivates further research on power ef-
ficient memory systems for the VGIW model.
Finally, Figure 11 compares the energy efficiency of

Figure 10: The energy efficiency of VGIW over
Fermi at the system, die, and core levels.

Figure 11: Energy efficiency of a VGIW core
over an SGMF core.

VGIW and SGMF for the SGMF-supported kernels.
The figure shows that while VGIW is 1.33× (or ∼25%)
more efficient than SGMF on average, the results vary
between kernels. SGMF excels at small kernels with a
little branch divergence, since passing live values through
the LVC is more wasteful than passing them directly
inside the CGRF. We believe that these results mo-
tivate further research on block size optimization for
MT-CGRFs cores. Nevertheless, for larger and more
complex kernels, especially ones that suffer from branch
divergence, the energy saved by VGIW architecture is
significant; moreover, VGIW can execute kernels of any
size and with any control flow complexity.
To conclude, the evaluation shows the performance and
power benefits of the hybrid dataflow/von Neumann
VGIW architecture over a von Neumann GPGPU (NVIDIA



Fermi) and a dataflow GPGPU (SGMF).

6. RELATED WORK

Hybrid dataflow/von Neumann architectures. The po-
tential benefits of hybrid dataflow/von Neumann ar-
chitectures have prompted multiple studies, including
TRIPS [20], WaveScalar [21,22], Tartan [23], DySER [24],
SEED [25], MAD [26], BERET [27], Garp [28], Dataflow
Mini-Graphs [29], Triggered instructions [30], and SGMF [5].
With the exception of SGMF, these designs focus on
single-thread workloads rather than data-parallel ones.
TRIPS, WaveScalar and Tartan share some common
execution characteristics (albeit with very different de-
signs). Programs are partitioned into hyperblocks that
are dynamically scheduled to execution nodes, which
comprise of simple cores (TRIPS, WaveScalar) or a CGRF
element (Tartan [31]). The nodes dynamically sched-
ule hyperblocks according to their data dependencies.
TRIPS and WaveScalar also support simultaneous thread
execution. TRIPS dynamically schedules threads’ hy-
perblocks on different grid tiles (spatial paritioning),
but hyperblock executes individually. Furthermore, by
tracking next hyperblock to execute for each thread
TRIPS effectively provides a simple form of control flow
coalescing. WaveScalar pipelines multiple instances of
hyperblocks originating from a single thread, while its
WaveCache extension [22] supports pipelining of hy-
perblocks originating from different threads. The pro-
posed VGIW, on the other hand, simultaneously ex-
ecutes multiple threads on the MT-CGRF core, and
time-multiplexes it between the basic blocks.
Other studies employ reconfigurable fabrics as accelera-
tors that execute CDFGs one at a time. Garp [28] adds
a CGRF component to a MIPS core in order to acceler-
ate dataflow-friendly loops. DySER [24], SEED [25],
and MAD [26] add some CGRF functionality to an
out-of-order processor, and the compiler maps code sec-
tions to the CGRF. While DySER is designed to be a
dataflow functional unit in the out-of-order processor,
SEED and MAD extend the core with a dataflow exe-
cution engine that can take over when dataflow-friendly
code is executed. Finally, the Dataflow Mini-Graphs de-
sign [29] improves the performance of out-of-order pro-
cessors by extracting single-input, single-output dataflow
graphs from sequential code and executing them (out-
of-order) on a dedicated ALU pipeline.
In contrast, SGMF [5] explicitly targets massively data-
parallel workloads as a dataflow GPGPU. SGMF, how-
ever, is limited to small kernels that fit in its reconfig-
urable fabric, and suffers from inefficient use of spatial
resources in the presence of control flow divergence.

Branch divergence on GPGPUs. Branch divergence
in GPGPUs has been extensively studied, yielding nu-
merous techniques to alleviate the problem. For brevity,
we only discuss a few representative ones.
Fung et al. [8] propose to fuse sparse divergent warps
into denser warps using a reconvergence stack. In a later
work, Fung and Aamodt [9] propose thread block com-

paction, which breaks down fused warps after the con-
trol flow converges in order to benefit from the coalesced
layout of data in memory. Meng et al. [10] propose to
dynamically split divergent warps and interleave their
execution, thereby leveraging control flow divergence
to hide memory latencies. Narasiman et al. [11] pro-
pose two-level warp scheduling, in which warps are dy-
namically derived from larger, possibly divergent warps.
Rhu and Erez [12] propose CAPRI, which improves on
thread block compaction techniques [9,11] by predicting
which threads are likely to diverge, thereby eliminating
a synchronization point at the point of divergence.
The abovementioned studies alleviate the control flow
divergence problem on contemporary GPGPUs and show
an average performance improvement of ∼20%. Impor-
tantly, they only aim to improve existing GPGPUs and
do not challenge their fundamental execution model.

Miscellaneous.
The Vector-Thread Architecture [32] can operate in ei-
ther vector mode, in which all compute elements ex-
ecute the same code for different data streams, or in
thread mode, in which the elements execute different
basic blocks. When control paths diverge, the architec-
ture switches from vector to thread mode to decouple
the execution of diverging threads.
XLOOPS [33] provides hardware mechanisms to trans-
fer loop-carried dependencies across cores. This pro-
cessor relies on programmer annotation of dependency
types to synchronize the data transfers.
CAWA [34] addresses the execution time divergence across
GPGPU warps. It proposes a predictor, scheduler, and
cache reuse predictor to accelerate lagging warps. VGIW
addresses warp execution time divergence by decoupling
the execution of threads using inter-thread dynamic dataflow.
Nevertheless, most of the optimizations proposed are or-
thogonal to the execution model and can be applied to
VGIW as well.

7. CONCLUSIONS
We presented the hybrid dataflow/von Neumann vec-
tor graph instruction word (VGIW) architecture. This
data-parallel architecture executes basic blocks’ dataflow
graphs using the multithreaded, coarse-grain, reconfig-
urable fabric (MT-CGRF) dataflow execution engine,
and employs von Neumann control flow semantics to
schedule basic blocks.
The proposed architecture dynamically coalesces threads
that wait to execute each basic block into thread vec-
tors, and executes each block’s thread vector using the
MT-CGRF compute engine. This control flow coalesc-
ing enables the VGIW architecture to overcome the
control divergence problem, which impedes the perfor-
mance and power efficiency of data-parallel architec-
tures. Furthermore, maintaining von Neumann seman-
tics enables the VGIW architecture to overcome the lim-
itations of the recently proposed single-graph multiple-
flows (SGMF) dataflow GPGPU, which is limited in the
size of the kernels it can execute.
Our results show that the VGIW architecture outper-



forms the NVIDIA Fermi architecture by 3× on average
(up to 11×) and provides an average 1.75× better en-
ergy efficiency (up to 7×).
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