
Do-It-Yourself Virtual Memory Translation
Hanna Alam1 Tianhao Zhang2 Mattan Erez2 Yoav Etsion1

Technion - Israel Institute of Technology1 The University of Texas at Austin2

{ahanna,yetsion}@tce.technion.ac.il
{thzheng,mattan.erez}@utexas.edu

ABSTRACT
In this paper, we introduce the Do-It-Yourself virtual memory trans-
lation (DVMT) architecture as a flexible complement for current
hardware-fixed translation flows. DVMT decouples the virtual-to-
physical mapping process from the access permissions, giving appli-
cations freedom in choosing mapping schemes, while maintaining
security within the operating system. Furthermore, DVMT is de-
signed to support virtualized environments, as a means to collapse
the costly, hardware-assisted two-dimensional translations. We de-
scribe the architecture in detail and demonstrate its effectiveness
by evaluating several different DVMT schemes on a range of vir-
tualized applications with a model based on measurements from a
commercial system. We show that different DVMT configurations
preserve the native performance, while achieving speedups of 1.2×
to 2.0× in virtualized environments.

CCS CONCEPTS
• Software and its engineering → Memory management; Virtual
memory; Virtual machines; Operating systems;

KEYWORDS
TLB, virtual memory, virtual machines, address translation

ACM Reference format:
Hanna Alam1 Tianhao Zhang2 Mattan Erez2 Yoav Etsion1 Technion
- Israel Institute of Technology1 The University of Texas at Austin2 .
2017. Do-It-Yourself Virtual Memory Translation. In Proceedings of ISCA

’17, Toronto, ON, Canada, June 24-28, 2017, 12 pages.
https://doi.org/10.1145/3079856.3080209

1 INTRODUCTION
Page-based virtual memory decouples an application’s view of its
memory resources from their physical layout. This decoupling en-
ables operating systems (OS) and hypervisors to eliminate memory
fragmentation and improve performance and memory utilization by
managing physical memory resources while providing applications
with a view of a contiguous address space that is isolated from all
other applications.

Processor architectures (e.g., Intel [1], AMD [4], ARM [6]) typ-
ically employ radix tree page tables to dynamically map virtual

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080209

memory addresses to physical ones, which enables them to support
sparsely populated virtual address spaces. The OS manages physical
resources at fixed, page-sized allocation units with address transla-
tion determined by the OS and stored in the radix-tree page table.
Mapping a virtual address to a physical one thus requires traversing
the radix tree, or “walking the page table”, which incurs multiple
memory accesses. On Intel’s x86-64 platforms, for example, the
page table’s radix is four such that a single load operation may re-
quire up to five memory accesses for translation and data fetches. To
mitigate this overhead, modern processors make aggressive use of
multi-level translation look-aside buffers (TLBs) to cache memory
mappings. Furthermore, partial walk caches are used to cache partial
traversals through the radix tree [7, 12].

Another common approach to reducing translation overheads is
to increase the page size. This has the dual effect of increasing the
TLB reach and reducing the radix tree depth. However, the coarser
granularity of large pages can curtail lightweight and agile system
memory management [34]. Furthermore, even with coarser pages,
the page table structure is still tuned for sparsely populated virtual
address spaces, which is at odds with some modern workloads that
pre-allocate large contiguous regions of virtual memory. Examples
of such workloads include data processing, scientific applications,
and virtual machines (VMs). These workloads, therefore, have large
regions of fully populated virtual address spaces that can benefit
from simpler mapping structures.

The mapping overhead of page traversal is most evident in VM
workloads, in which a hypervisor allocates a large virtual memory
region to emulate the guest VM’s physical memory. The guest OS
then manages its own mapping of guest virtual addresses (gVA) to
guest physical addresses (gPA). This nested memory mapping [11],
supported by commercial processors [1, 4, 6], squares the number of
accesses needed to map a guest virtual address to its host physical
address (hPA). On Intel and AMD architectures, for example, the
gVA-to-hPA mapping may take up to 24 memory accesses.

In this paper, we present the Do-It-Yourself Virtual Memory Trans-
lation (DVMT) architecture, a virtual memory architecture that en-
ables applications and virtual machine monitors (VMMs) to cus-
tomize virtual-to-physical memory mappings. DVMT decouples
address mapping from access permission validation. This decou-
pling enables the OS/hypervisor to delegate the virtual-to-physical
mapping to the application, while still enforcing its own security
and isolation policies. Furthermore, DVMT maintains the concept of
memory paging and swapping, which enables the OS/hypervisor to
incrementally reclaim physical memory pages without terminating
any application.

DVMT is intended to complement the existing virtual memory
architecture and enable applications to optimize the mapping pro-
cess only for those specific memory regions that can benefit from a

https://doi.org/10.1145/3079856.3080209
https://doi.org/10.1145/3079856.3080209

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada H. Alam et al.

customized virtual-to-physical mapping. We envision that most cus-
tomized mappings will be handled by specialized memory allocators
or tuned operating systems (library OSs, VM images, or containers).

The DVMT architecture operations can be summarized as follows:
Virtual-to-physical mapping and translation. Using DVMT, an

application can request physical frames from the OS/hypervisor with
address properties that allow the application to construct its cus-
tomized do-it-yourself (DIY) mapping. For example, an application
may request a large contiguous allocation that can then be directly
mapped or even make multiple requests and construct a specialized
acceleration structure, such as a hashed page table. The application
then registers its own mapping function as a helper thread with the
OS/hypervisor. On a TLB miss from the DVMT virtual address
range, the helper thread is triggered to compute the mapping and
insert it into the TLB. Other TLB misses use the system’s default
page walk. Notably, an application’s customized (DIY) translation
scheme is private to the application and is independent of other
applications, which may each use their own customized mappings.

Enforcing memory protection. The validity of customized mem-
ory mappings is enforced using a minimal permissions mechanism,
inspired by capability systems [29], which is invoked on each TLB
insertion. The OS/hypervisor maintains a system-global array that
tags each physical frame with an ID and associates the ID and access
permissions with applications; we refer to each ⟨ID, permissions⟩
tuple as a token. To validate a DVMT mapping, the processor checks
that the TLB-filling thread holds a token that is associated with the
physical frame. We describe a simple token table that requires at
most a single memory access for the protection check. The tokens
are granted only by the OS/hypervisor and therefore maintain the
same permissions model as current systems.

The proposed DVMT design thus enables VM workloads to map
gVA to hPA with just a single memory access even when all trans-
lation caches miss: a direct segment translation is done with no
memory accesses and the protection capability check requires a
single memory access. This is contrast to the 24 accesses required
for gVA-to-hPA mapping on current the x86-64 architecture.

To summarize the contributions of this paper:

• We introduce the DIY virtual memory translation (DVMT)
architecture, which enables runtime systems and applica-
tions to employ customized virtual-to-physical mapping
using helper threads.

• We propose a new light-weight capability system that vali-
dates DIY memory mappings and enforces memory protec-
tion using a single memory access.

• We evaluate DVMT using a set of scientific, data process-
ing, and VM workloads together with several customized
translation schemes consisting of a hash table [41] , a flat
indirection array, and a direct segment [10]. Our evaluation
shows that using DVMT in the hypervisor can improve
the performance of VM workloads, achieving an average
speedup of 1.2–1.5× for the different schemes. We fur-
ther show that different configurations of DVMT schemes
in both hypervisor and guest achieve average speedups of
1.3–2.0×.

L4 L3 L2 L1+ + +

L4 base

+ +VA PA

Figure 1: x86-64 native VA→PA Translation

2 ON THE NEED FOR CUSTOM MEMORY
TRANSLATION: AN X86-64 CASE STUDY

Prevalent computer architectures (e.g., Intel, ARM) employ radix
trees to translate virtual addresses (VA) to physical addresses (PA)
and to enforce the memory access protection dictated by the operat-
ing system. The key benefit of using a radix tree is that it can serve
both sparse and dense virtual address spaces, but this generality
comes at a cost. Poor memory access locality workloads, which
commonly characterize modern virtual machines and large-memory
databases, can benefit from more efficient mapping methods.

In this section we examine common radix tree-based virtual mem-
ory mechanisms, using the x86-64 implementation as a case study,
and discuss the performance implications of this design choice.

Readers who are familiar with the overheads of virtual mem-
ory translation can skip directly to Section 2.2, which argues for
customizing memory translations.

2.1 Memory translation overheads in X86-64
2.1.1 Native virtual address translation.
x86-64 processors use a radix tree of depth 4 for virtual-to-

physical translation in native application. We denote each layer
in the tree as Li, where 1 ≤ i ≤ 4 (with L4 being the root of the tree).
Each node in the tree consists of a table representing the nodes in
the subsequent level of the tree. The node populates a single physi-
cal memory frame. Each table entry maintains the physical frame
number (pointer) of the child node and the OS imposed permissions
for the entire subtree. Leaf nodes hold the target frame number to
which the source virtual page is mapped and its permissions.

The translation process, often referred to as a page table walk,
is depicted in Figure 1. The root of the tree is pointed to by the
architectural page table register (CR3 in x86-64) in the form of the
physical frame that stores the root node L4. The translation process
is iterative and traverses a path from the root to a leaf node. In each
step, subsequent bit sets from the source virtual address are used to
index the tables in subsequent nodes along the path. For example, in
a 4KB page size configuration, bits 39–47 in the VA (current x86-64
implementations support 48-bit virtual address spaces) are used to
index the table in the L4 root node. The indexed entry provides the
frame number of the L3 node that is next along the search path.

The recursive structure of the tree provides support for sparse
virtual address spaces without incurring excessive storage overheads.
Any table entry in any node in the tree can be marked as invalid,
thereby indicating that the entire virtual address space represented
by the subtree is not mapped. When the entire subtree is not mapped,
nodes in the tree need not be allocated, thereby saving memory.

Discussion. The performance penalty of a valid page walk is
four memory accesses. This excessive overhead is mitigated using
aggressive translation caches. The translation lookaside buffer (TLB)
is the primary cache holding recent virtual-to-physical mappings.

Do-It-Yourself Virtual Memory Translation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

1
1

%

8
% 1

3
%

1
3

%

8
% 1
1

%

1
4

%

8
%

3
0

%

2
% 1

2
%

7
8

%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Tr
an

sl
at

io
n

 O
ve

rh
ea

d

(a) Native applications, 4KB pages.

4
1

%

7
1

%

5
4

%

5
7

%

1
5

%

6
3

%

2
3

%

2
4

%

4
5

%

6
5

%

4
6

%

9
1

%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Tr
an

sl
at

io
n

 O
ve

rh
ea

d

(b) Applications running in virtual machine,
g4KB/h4KB pages.

1
6

%

7
3

%

3
7

%

3
0

%

1
%

4
7

%

<1
%

<1
%

3
4

%

5
4

%

2
9

%

7
0

%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Tr
an

sl
at

io
n

 O
ve

rh
ea

d

(c) Applications running in virtual machine,
g2MB/h2MB pages.

Figure 2: Fraction of total run time devoted to page table walks on Haswell for different machine and application configurations (see
Section 5 for a description of benchmarks and methodology).

8
5

%

5
8

%

9
4

%

8
9

%

7
7

%

4
5

%

2
2

%

6
6

%

5
6

%

3
1

%

3
7

%

1
7

%

4
9

%

5
1

%

2
4

%

7
8

%

<1
%

9
1

%

8
6

%

7
0

%

8
%

<1
%

2
4

%

1
4

%

<1
% 1

4
%

<1
%

2
3

%

2
3

%

<1
%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

GUPS mcf cactusADM

Tr
an

sl
at

io
n

 o
ve

rh
ea

d
s IVY HSW

Figure 3: The translation overheads on Haswell vs. Ivy Bridge
processors (g4K/h2M indicates using 4K pages in the guest and
2M in the host).

The TLB itself, however, must be small (up to 64 entries on the
Intel Haswell (HSW) processor [1]) since it resides on the memory
access’s critical path: as data and instruction caches are physically
tagged, the translation must be performed before the cache access. To
palliate the small size of the TLB, contemporary processors employ
a 2nd level TLB (STLB), partial walk caches (PWCs), and caching
of page tables in data caches. PWCs reduce the number of memory
accesses required to perform a virtual-to-physical translation by
caching virtual addresses to the physical address of one intermediate
tree node along the translation path.

Aggressive caching accelerates translation when workloads ex-
hibit locality in virtual address space. For example, because Intel
has increased the translation caches in the Haswell processor, we see
that native translation overheads are minor, as shown in Figure 2a
(the benchmarks and methodology are described in Section 5).

Figure 3 illustrates the performance impact of Intel’s modifica-
tions to the translation caches between Ivy Bridge and Haswell
processors (most notably, enlarging the PWCs and STLB). The fig-
ure presents the translation overheads observed on both architectures
for select benchmarks, namely GUPS, mcf, and cactusADM.

We see that GUPS’s performance is hardly improved in Haswell,
as this benchmark generates a random memory access trace. In
contrast, benchmarks that exhibit non-random memory access pat-
terns (e.g., mcf and cactusADM) experience a major reduction of
the translation overhead when running natively. Moreover, STLB
caching of 2MB pages in Haswell effectively eliminates the trans-
lation overheads for virtualized environments that use large 2MB

pages in both guest and host. Nevertheless, Haswell still experiences
substantial translation overheads when using small 4KB pages in
virtualized environments. Since 4KB pages are crucial for memory
usage optimizations, Haswell’s performance motivates the design of
new translation mechanisms.

2.1.2 Translating addresses in virtual machines.
Virtual machines (VMs) require additional complexity when deal-

ing with virtual memory translation. Each running process in a
virtual machine needs its own isolated virtual address space. Con-
sequently, the system must provide translation from guest virtual
addresses (gVA) to a physical address on the host machine (hPA).
This translation is performed using nested page tables. In each VM,
the guest OS sets up a page table to map the gVA to a guest “physical
address” (gPA). Since the host emulates the guest physical address
space using a region in the host physical address space, a gPA is
effectively a host virtual address (hVA). A hVA is translated to a
hPA using per VM page tables in the hypervisor.

The main problem with the nested gVA-to-gPA translation is that
it dramatically increases the number of memory accesses required by
each of the nested radix tree page tables, as depicted in Figure 4, in-
curring up to 24 memory accesses for a single walk. This is because
each node in the guest radix tree points to a node in the next level us-
ing a guest physical frame number, and thus each transition between
levels in the guest radix tree gLi+1 to gLi incurs a full gPA-to-hPA
using the VM’s page table in the hypervisor. This is appropriately
referred to as a two-dimensional (2D) page walk. Notably, modern
architectures execute 2D page walks directly in hardware using the
conventional page table walker with modifications to the traversing
algorithm.

Discussion. The dramatic increase in the number of memory
accesses incurred by each page walk affects the run time of VM
workloads. Figure 2b shows the fraction of the run time devoted
to page table walks when running each of our benchmarks in a
virtual machine, using 4KB pages in both the guest OS and the
hypervisor. The figure shows that the page table walk overhead is a
major contributor to the run time of VM workloads, standing at 46%
on average (and 91% on GUPS).

As noted above, modern processors employ two main mechanisms
to mitigate this overhead — large, multi-level TLBs and PWCs on
the one hand, and support for large pages on the other. The effective-
ness of the TLBs and PWCs is evident when examining translation

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada H. Alam et al.

gL4

5
gL3

10
gL2

15
gL1

20

hL4

1

hL3

2

hL2

3

hL1

4

+

+

+

hL4

6

hL3

7

hL2

8

hL1

9

+

+

+

hL4

11

hL3

12

hL2

13

hL1

14

+

+

+

hL4

16

hL3

17

hL2

18

hL1

19

+

+

+

hL4

21

hL3

22

hL2

23

hL1

24

+

+

+

Guest
L4 base

Host
L4 base

Guest Virtual Page number

h
P

A
(G

C
R

3
)

h
P

A
(g

L 4
[G

V
A

])

h
P

A
(g

L 3
[G

V
A

])

h
P

A
(g

L 2
[G

V
A

])

h
P

A
(g

L 1
[G

V
A

])
 =

 P
FN

offset

hPA

+ + + +

Figure 4: Two-dimensional gVA → hPA translation on the x86-
64 architecture.

overheads in the native execution with 4KB pages (Figure 2a) vs. the
g4KB/h4KB virtual machine configuration (Figure 2b). Notably, the
overhead of address translation in VM workloads is less pronounced
than we would expect: although each translation memory reference
grows from 4 in native execution to 24 in virtualized execution (a
factor of 6×), the runtime overhead only grows by a factor of 3.83
(from 12% to 46%).

The increased reliance on address translation caching suggests
that a generic address translation mechanism, and specifically radix
tree page tables, is too slow in the common case. We argue that
the prevailing reliance on address translation caching is not a scal-
able solution. As modern workloads (e.g., data analytics, virtual
machines) stress the memory system even further due to their dra-
matically increased memory footprint, the size and complexity of
address translation mechanisms is only expected to grow. Indeed,
vendors are already forced to continuously devote more resources to
caching address translations, and modern processors include com-
plex caching schemes such as extended PWCs (ePWC) support for
virtualization and multi-level TLBs.

Large pages are commonly used to mitigate address translation
overheads. Figure 2c shows the translation overheads when running
the workloads in VMs, when both the guest OS and the hypervisor
are configured to use 2MB pages. The figure shows that using large
pages significantly reduces the translation overheads (down to 29%
on average). Our results favor 2MB pages more than do previous
studies, e.g., [10, 23, 34]; this is due to our use of an Intel Haswell
processor, which introduces a new STLB for 2MB pages. The benefit
of large pages comes from the increase in TLB and PWC span. Since
2MB pages are 512× larger than 4KB pages, each 2MB TLB cached
translation is effectively equivalent to 512 translations of 4KB pages.
In addition, using 2MB pages reduces the depth of the page table
radix tree and thereby reduces memory accesses per TLB miss.

The use of large pages, however, greatly limits the hypervisor’s
flexibility and agility, making it difficult for it to efficiently monitor
and manage the physical memory resources. One notable example,
is the extensive use of data deduplication performed by modern hy-
pervisors in order to reclaim physical memory. When the hypervisor

notes that multiple physical frames store the same data, it simply
augments the page tables pointing to those frames to share a single
copy of the data and can thus reclaim the redundant memory frames.
Yet the effectiveness of data deduplication drops dramatically as
frame sizes increases [25, 34, 40].

2.2 The potential benefits of DIY
virtual-to-physical translations

The analysis of the translation performance on the x86-64 architec-
ture (Figure 2) teaches us that the generality of radix trees comes
at a cost, and increasing the number of memory accesses incurred
by address translations in VMs substantially affects system perfor-
mance. Furthermore, the rigid memory management imposed by the
use of large pages inhibits the agility required to manage memory in
hypervisors. Consequently, we argue that efficient hardware support
for application-specific memory address translation can leverage
application semantics to reduce the number of memory accesses
incurred by address translation.

Virtual machines are a striking example of applications that can
benefit from such customization. VMs employ a large, contiguous
virtual memory segment that is active throughout their execution.
Yet the translation overheads they incur due to the traversal through
generic radix trees are demonstrated by the difference in translation
overheads depicted in Figure 2a, which examines native applications,
and those depicted in Figure 2b, which examines the same applica-
tions in virtualized environments. This observation is also backed by
previous studies that examined custom address translation for both
native workloads (Basu et al. [10]) and virtual (Gandhi et al. [23])
environments.

We conclude that hardware support for application-specific ad-
dress translation can go a long way towards mitigating translation
overheads. Importantly, customization must not inhibit other effec-
tive optimization opportunities such as translation caching [7], and it
must support memory paging with small pages, which facilitates ef-
ficient and agile OS/hypervisor memory management [34]. Notably,
the aforementioned studies by Basu et al. [10] and Gandhi et al. [23]
do not fulfill these requirements, as they rely on segmentation and
the use of contiguous physical memory in the hypervisor (with a
possibility to exclude physical frames with permanent hard faults
using a bloom filter). The following sections describe our proposed
extensions for existing address translation mechanisms that facilitate
application-specific customizations.

3 RELATED WORK
DVMT facilitates generic, fast, workload-customized address trans-
lation by exposing physical memory resources to applications. It
does so by uniquely incorporating 3 distinct hardware facilities: (1) a
lightweight capability system [29], (2) hardware helper threads [17],
and (3) software-managed TLBs [26]. In this section we survey past
work aimed at mitigating address translation overheads and contrast
it with the unique attributes that comprise DVMT.

Address translation overheads are commonly mitigated using
large pages; this extends the coverage of the mappings cached in the
TLBs [20, 21]. Large pages, however, greatly limit the hypervisor’s
ability to optimize resource utilization through extensive usage mon-
itoring and memory deduplication [34]. Furthermore, supporting

Do-It-Yourself Virtual Memory Translation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

multiple page sizes increases hardware and OS complexity [37] and
requires application support [21, 36]. TLB coverage can also be in-
creased by clustering and coalescing page translations, as proposed
by Pham et al. [33, 34] and Karakostas et al. [28]. Alternatively,
Bhattacharjee et al. [13, 14], Lustig et al. [30], and Kandiraju and
Sivasubramaniam [27] improved TLB efficiency either by sharing
translations across cores using shared TLBs or through prefetching.
These approaches are largely orthogonal to DVMT, which aims to
reduce the translation time on TLB misses using fast, customized
address translation.

Another method used to reduce translation overhead is hiding
the translation latency by overlapping it with computation. Barr et
al. [8] proposed SpecTLB, which predicts address translations. The
predictions are validated while the processor speculatively executes
the predicted memory accesses. Barr et al. [7] and Bhattacharjee [12]
compared the partial caching of virtual and physical translations, and
showed that virtually indexed translations deliver better performance.
Zhang et al. [42] deferred address translation until a cache miss is
encountered and data must be retrieved from physical memory. These
studies are orthogonal to DVMT, as they aim to hide the overhead
of existing translation mechanisms rather than minimize them.

The nesting of address translation in virtualized environments
makes them most susceptible to the performance impact of address
translation [3, 15]. Bhargava et al. [11] explored the 2D page traver-
sal and proposed optimizations to partial walk caches. Ahn et al. [5]
proposed to use a dedicated hardware translation unit for VMs that
uses flat page tables, and thereby reduce the number of memory
accesses required for gPA-to-hPA translation. A different approach,
proposed by Wang et al. [38], dynamically decides whether to use
nested or shadow page tables on the basis of application characteris-
tics. Gandhi et al. [24] extend this approach with agile paging which
allows for dynamic selection between both translation modes within
the application’s different memory regions. Unlike DVMT, these
studies only target virtualized environments but ignore native appli-
cations. Moreover, they propose non-flexible translation schemes
that may be inefficient for some workloads.

A number of studies proposed customizing address translation in
the presence of software-managed TLBs, including the studies by
Xiaotao et al. [16], Jacob and Mudge [26], and Engler et al. [19]. In
contrast to DVMT, these systems suffer excessive translation over-
heads as they rely on frequent costly OS interventions and virtualiza-
tion traps to initiate the translation and to enforce memory protection.
Yaniv and Tsafrir [41] present a comparison between radix tree and
hash table translations. Their study shows that carefully optimized
hashed page tables may outperform existing PWC-aided x86-64
hardware and are inherently more scalable. DVMT can adopt these
optimizations when implementing a custom, user-defined hash table
translation scheme.

Shahar et al. [35] presented a case for a software address trans-
lation layer and paging system in GPUs, which enables the imple-
mentation of fully functional memory mapped files. DVMT simi-
larly argues for bypassing the traditional translation scheme with
an application-specific translation, while retaining the performance
benefits provided by hardware translation caching (e.g., TLBs).

Finally, Gandhi et al. [23] proposed using segmentation in virtu-
alized environments and big memory workloads, thereby replacing

DVMT Low

Pending miss
register (PMR)

Physical memory
token regs. (PMTRs)

User-level
virtual

memory
translation

table

Physical
frame ID

table
(global)

Valid
mapping?

Insert to TLB

1

2

=

VA
from TLB miss

Fault

3

4

<VA,PA>
Mapping

5

6

Protected modeUser mode

ID table base
register

DVMT High

Figure 5: Overall (simplified) flow of DVMT, including its major
hardware, OS, and application components. The figure depicts
hardware registers in green and software tables in blue. The
registers are part of the process context and are replaced on
context switches.

page walks with a much faster computation of segment offsets. How-
ever, this method inhibits resource utilization optimizations such
as memory overcommit, paging, and swapping, which are com-
mon in virtualized environments [34]. DVMT, in contrast, supports
(small-page) paging and facilitates optimizations such as memory
overcommit and deduplication.

4 THE DVMT ARCHITECTURE
We start with an overview of how DVMT operates, including the
hardware, OS, and application components. We then discuss the
different components in detail in the case of an application running
directly on the OS before describing how DVMT interacts with
virtual machine workloads.

4.1 DVMT overview
Figure 5 depicts a simplified view of the overall DVMT flow; we
elaborate on how the different steps are actually accomplished later
in the section. 1 When the application is initialized, it requests to
use DVMT for a contiguous range of virtual addresses by setting the
DVMT_low and DVMT_high bounds. These bounds are maintained by
the OS as part of the process context and are used by the hardware to

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada H. Alam et al.

determine which TLB misses should use DVMT and which the stan-
dard page walk. 2 Also during initialization, the process requests
physical frames from the OS to be allocated in accordance with
the DVMT scheme it employs (e.g., contiguous regions); note that
DVMT supports arbitrary translation and dynamic allocation as well.
The OS also creates the necessary permission tokens, which allow
the system to enforce access permissions to physical frames inde-
pendently from the translation process, and stores these tokens in the
running process physical memory token registers (PMTRs). 3 When
a TLB miss occurs within the DVMT range, hardware triggers the
translation sequence by updating a pending miss register (PMR) and
waking up the DVMT helper thread. 4 The helper thread performs
the translation using its own state and returns the physical address to
the hardware TLB. 5 Before committing any accesses based on the
translation, hardware validates that the translation does not violate
memory protection. This is done by reading the permission token ID
associated with the physical frame from the system global physical
frame ID table in memory (pointed to by the ID table base register)
and comparing it with the IDs in the process token registers. 6 The
TLB entry is then committed with the permissions from the matched
token (tokens are only set and allocated by the OS).

In its simplest form, the DVMT architecture requires a minimum
of four 64-bit registers and a 32-bit permission token register for
each thread context; additional permission tokens may be added if
shared memory regions are required. Adding extra pairs of bound
registers allows for more than one DVMT region per-applications.

4.2 DVMT operation in native mode
We begin our description of DVMT architecture by describing its op-
eration in native mode (i.e., no virtualization). Since DVMT breaks
the common unification of memory translation and memory isola-
tion, we explain the two separately, starting with protection and
isolation, continuing through the translation process, and concluding
the subsection by discussing necessary OS support.

4.2.1 Enforcing Memory Protection and Isolation. The DVMT
architecture relies on permission tokens to ensure that the overall
protection and isolation guarantees are enforced alongside features
of conventional page-based virtual memory. The OS allocates each
process a set of permission tokens. Each token consists of a unique
ID and access permissions (read/write/execute). For permission to-
kens to work, the OS associates a process token with each allocated
physical frame. Each frame may have just a single token, but mul-
tiple frames may share the same token. Each token thus identifies
a region in which all frames share the same protection characteris-
tics. In order for a process to access memory, it must have a token
associated with the physical frame being accessed and the token
permissions must allow the requested access. Notably, this design
provides a simple capability system [29].

Process tokens are part of the process context and are stored in the
hardware PMTRs when a process thread is active. All physical frame
tokens are maintained in a system global physical frame ID table,
which is stored in a contiguous region of physical memory that is
managed by the OS. The table is accessed by hardware, which uses
the accessed frame number to index the table and retrieve the frame’s
ID to check permissions. Access permissions are checked when a
new translation is inserted into the TLB and when physical memory

is accessed directly by the DVMT helper thread during translation.
The permissions check is implemented in hardware. The frame’s ID
is retrieved from the physical frame ID table and is validated against
the running thread’s tokens (ID and permission) in the PMTRs.

The right-hand side of Figure 5 illustrates the access validation
invoked when the translation thread inserts a virtual-to-physical
mapping into the TLB. If the validation is successful, the mapping is
committed to the TLB and the memory access that missed the TLB
is re-issued. If the validation process fails, a page fault exception
is raised to the OS. Notably, since the access permission validation
is decoupled from the memory translation itself, the latency of the
protection validation can be hidden using speculative execution [8].
Once the address translation completes, the processor can continue
to execute in speculative mode until the protection checks complete
as well.

The use of permission tokens guarantees that processes cannot
access physical frames that belong to other processes unless they
are explicitly shared when multiple processes are granted tokens
with the same ID. Furthermore, processes cannot access or forge the
contents of their permission tokens. Finally, the simplicity of the
proposed mechanism allows access validation to be performed in
hardware at the cost of a single memory access (retrieving a frame’s
ID from the physical frame ID table). It also allows for efficient
caching of the contiguous frame table entries.

4.2.2 VA → PA translation. DVMT offloads the memory trans-
lation to a helper thread, which is triggered upon a TLB miss within
the DVMT virtual address range reflected in the DVMT_low and
DVMT_high registers. To avoid costly software context switches, the
translation helper thread is co-scheduled with the application’s execu-
tion thread on a separate (and potentially very lightweight) hardware
thread. Once scheduled, the helper thread blocks until a translation
is needed and does not interfere with the main thread. When a TLB
miss occurs within the DVMT range, the memory management unit
(MMU) writes the offending VA to the PMR to resume the blocked
translation thread (non-DVMT addresses are translated using the
system default page tables). The PMR serves as a simplified form
of an M-Structure [9] and provides very fast communication and
notification between the main and helper threads (as opposed to a
costly trap to a miss handler used by OSs on MIPS [31, 32] and
variants of SPARC [39]).

The helper thread performs the translation and may issue its own
memory instructions. However, the memory addresses must either be
outside the DVMT range or refer directly to physical addresses using
special memory operations. This ability does not impose security
risks because the architecture enforces physical memory isolation
with the permission tokens. In order to support flexible translation
schemes and take advantage of existing hardware, DVMT also pro-
vides special instructions that enable the translation thread to insert
partial mappings to the PWCs and to query them. Once the PA is
computed, the helper thread inserts it into the TLB using another
special instruction. This operation then wakes up the main thread
and the offending memory operation can complete or be re-issued
for completion. The helper thread then immediately blocks and does
not consume resources until the next time the PMR is written by
the MMU. The new DVMT special instructions are summarized in
Table 1.

Do-It-Yourself Virtual Memory Translation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Instruction Description
insertTLB(⟨VA,PA⟩, perm) Validate a ⟨VA,PA⟩ mapping and commit

it into the DTLB with permissions perms
extracted from the permission token.

insertPWC(CID,⟨VA,PA⟩,perm) Validate a partial virtual memory mapping
and commit it into the partial translation
cache specified by CID with permissions
perms.

lookupPWC(VA) Look up the partial translation of VA in the
all PWCs. Return the translation and the
CID of the deepest partial translation cache
that was hit.

loadPA(PA) load the value stored in physical address
PA (after validating it is accessible by the
calling process).

Table 1: Listing of DVMT instructions.

Listing 1: Pseudocode of a simplified translation handler using
DVMT{flat} translation scheme.

void TLBmiss_handler(void) {

while(true) {

/ / read o f f e n d i n g VA from t h e PMR. o p e r a t i o n
/ / b l o c k s u n t i l an a d d r e s s i s a v a i l a b l e (TLB mis s) .
VA = readPMR ();

/ / compute t h e o f f s e t o f t h e o f f e n d i n g VA ' s
/ / page i n t h e i n d i r e c t i o n t a b l e .
MTB = mapping table physical base address

offset = (VA - DVMT_Low) >> page_size_bits;

/ / read t h e t a r g e t f rame p o i n t e r from t h e
/ / i n d i r e c t i o n t a b l e .
PA = loadPA(MTB + offset);

/ / g e t t h e page p e r m i s s i o n s from t h e PMTR .
perm = readPMTRPerms ();

if (PA != nullptr) {

/ / t h e mapping e x i s t s ; i n s e r t i n t o TLB . o p e r a t i o n
/ / w i l l f a u l t i f perm i s more p e r m i s s i v e than
/ / t h e p h y s i c a l f rame ID t a b l e .
insertTLB({ VA, PA }, perm);

} else {

/ / t h e VA has n o t y e t been mapped t o a p h y s i c a l
/ / f rame . a l l o c a t e a new frame .
allocateFrame(VA);

}

}

}

4.2.3 Custom memory translation schemes. DVMT allows
applications to customize their memory translation. In this paper
we explore the following custom translations: DVMT{flat}, DVM-
T{hash}, and DVMT{DS}.

The DVMT{flat} scheme uses a simple flat indirection table. An ar-
ray (contiguous in physical memory) stores the physical frame num-
bers and is indexed by virtual page number: ⌊ virtual address−DV MT _Low

pagesize ⌋.
This scheme obtains a translation with a single memory access. Be-
cause the translation requires a contiguous array, the scheme best
suites workloads with moderate-size memory requirements (up to a
few GBs) and have a densely populated virtual address space. List-
ing 1 shows pseudo code of a translation handler for the DVMT{flat}
translation scheme.

The DVMT{hash} scheme uses a hash table that functions as a
software TLB and is backed by a 4-level software-managed radix

tree. The number of buckets in the hash is configurable, and each
entry holds 4 cache-line-aligned ⟨VA,PA⟩ pairs (the hash table is
updated using a pseudo-LRU replacement policy). The hash table
lookup is accelerated using the SIMD unit (512-bit wide, like that
of the Intel Skylake). An entire 64B bucket is loaded into a vector
register and its 4 entries are searched concurrently. If the hash table
misses, the handler performs a software page walk. The walk is
assisted by the hardware PWCs (which are the updated by the re-
covered mapping) and is therefore more susceptible to PWC flushes
that occur on every context switch. This scheme obtains a translation
with a single vector register load. The bounded hash table makes this
scheme attractive for workloads with a huge virtual address space or
a sparsely populated one.

Finally, DVMT{DS} imitates the direct segment translation intro-
duced by Basu et al. [10] and extended by Gandhi et al. [23]. The
scheme manages the DVMT virtual address range as a single, con-
tiguous memory segment that maps directly to a physical memory
segment. This scheme can translate addresses with a simple addi-
tion, but requires the use of a contiguous physical memory segment
whose size matches that of the DVMT virtual range. Still, DVMT
physical frame IDs allow the memory pages to be swapped out by
the OS, which can change the frame ID such that the permission
check fails leading to an exception; this is impossible in the original
direct segment designs [10, 23].

4.2.4 OS support. In this section we discuss the OS modifica-
tions imposed by DVMT. Primarily, the OS must manage permission
tokens and the physical frame ID table, as well as allow applications
to explicitly allocate physical frames. In addition, the OS should
allow translation threads to invoke TLB shootdowns, support swap-
ping of frames that are managed by DVMT application code, and
schedule the helper threads to hardware contexts.

Managing tokens and physical frames. The OS creates per-
mission tokens that carry unique IDs, assigns tokens to processes,
and associates frames with token IDs. It also manages the physical
frame ID table, which stores all frame IDs. The OS allocates the
physical frame token table at boot time. Whenever it allocates a
physical frame for a process, it updates the frame ID with the desig-
nated process’s permission token. When memory is shared, the OS
creates a new token, associates its ID with the shared frames, and
assigns the token to all the processes sharing the memory. Notably,
managing the tokens at the OS level hides them from user code and
prevents them from being forged.

User-level TLB shootdowns. Any change to the virtual-to-
physical memory mapping must be propagated to all the TLBs in the
system using TLB shootdowns. TLB shootdowns are (costly) soft-
ware coherence scheme across TLBs that exists in all modern OSs
as a kernel-level operation. Moving virtual-to-physical mappings
to application code requires that TLB shootdowns can be invoked
by the application code. This requires that the OS expose its TLB
shootdown mechanism to DVMT processes through a dedicated
system call.

Swapping and memory overcommit. The DVMT design pre-
serves the paging property of modern virtual memory systems, which
enables the OS to swap out unused memory pages. Whenever the
OS swaps a physical frame to a secondary storage, it must also

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada H. Alam et al.

gVA

gL1gL2gL3gL4

Token
check

hPA
GL4 base

Hypervisor memory
 translation

Figure 6: The translation flow when only the hypervisor uses
the DVMT architecture.

signal the frame’s owner process to update its user-level mapping
tables. This is a key change that DVMT imposes on the OS swapping
mechanism.

Importantly, security is not affected even when the application’s
memory manager ignores the signal. When swapping out a frame, the
OS updates the frame’s ID in the physical frame ID table and thereby
prevents the process from using a stale mapping. Furthermore, before
modifying the table, the OS must flush all mappings pertaining to
the frame in all TLBs. This differs from existing TLB flush process
in that entries are flushed based on the physical frame ID rather than
page number, which requires some additional TLB logic.

Finally, managing memory translations at the application level
makes it possible to optimize the selection of a swap victim. Instead
of the OS generically determining which frames to swap out, it
can allow the user process to judiciously select a victim frame (to
avoid any security issues, an abort protocol [18] should be applied
to overcome unresponsive applications).

Managing Accessed/Dirty bits. Legacy A/D bits are main-
tained in the physical frame ID table. Each entry stores a frame’s
permission token and its A/D bits, which are updated on TLB refer-
ences.

4.3 Extending DVMT to virtualized workloads
Contemporary memory translation in virtual machines requires a
2D page walk to derive the hPA from a given gVA, and can benefit
from customized translation. DVMT seeks to reduce the overhead in
each dimension independently by enabling both host (hypervisor)
and guest to manage their own memory translations. For brevity, we
focus our discussion on two scenarios: (1) hypervisor-only DVMT
(hVA-to-hPA); and (2) non-collaborative DVMT translation in both
guest (gVA-to-gPA) and hypervisor (hVA-to-hPA).

Hypervisor-only DVMT. Hypervisor-only DVMT translation
enables the hypervisor to manage the translation of the VM emu-
lated physical memory region to host physical address (in the Linux
KVM/QEMU model, this translation will be implemented by the
QEMU VM-wrapper process). In this mode, translations inside the
guest (gVA-to-gPA) are executed by the hardware page-walker and
managed by the guest OS.

Figure 6 illustrates the hypervisor-only DVMT translation. For
each level in the guest OS page tables, the hypervisor’s custom
translation thread executes a gPA-to-hPA translation. Naturally, in
this mode only the hypervisor needs to be modified to incorporate
DVMT, while guest OSs and applications remain unmodified.

gVA

Token
check

hPA
Guest memory

translation

Hypervisor memory
 translation

Figure 7: Virtual translation flow when both guest and hypervi-
sor use DVMT architecture

DVMT in both guest and hypervisor. DVMT supports virtu-
alized guests by replicating their hardware state (PMR, DVMT_High,
DVMT_Low, PMTRs, and ID table base register) and providing
guests VMs with a separate hardware context. This model is similar
the support for nested pages tables in the x86-64 architecture [1].
The separate hardware context enables guest VMs to manage their
own “physical” frame ID table (frames in guest physical address
space) and to use DVMT hardware and let guest applications manage
gVA-to-gPA memory translations. Notably, in guest mode, insertions
to TLB and PWCs are validated both against the guest’s PMTRs and
the host’s PMTRs.

Figure 7 illustrates the combined translation. The translation
thread of the guest application translates its (guest) virtual addresses
to (guest) physical address. The hypervisor then translates the guest
physical address (host virtual) to a host physical address.

In summary, the DVMT architecture allows native and virtual-
ized applications to customize the memory translation flow while
imposing minimal hardware constraints. The following sections
present our evaluation of the DVMT architecture.

5 METHODOLOGY
Running an instruction-level, full-system cycle-based simulator for
virtualized workloads whose individual run time on a real system
takes many minutes is not feasible. Instead, we model the perfor-
mance impact of DVMT on memory translations by simulating
the DVMT schemes described in Section 4.2.3 and comparing the
translation overhead with detailed simulations of the MMU and the
hardware page walker (including all TLBs and PWCs). Instead of
comparing DVMT and Haswell MMU simulated times directly, we
follow an approach that also takes into account an estimate of the
translation overhead measured on an Intel Haswell system. We do
this by estimating the ideal execution time (assuming perfect TLBs)
by explicitly forcing hugepages and collecting performance counters
data. We measure ideal time (Tideal) and the baseline execution time
with 4K pages (Tbaseline). We also estimate the overhead of trans-
lation on the real system (OHHSW). We then scale the overhead by
the ratio of simulated DVMT and the simulated conventional MMU
(the simulated overheads are SimDV MT and SimHSW , respectively)
to estimate the measured translation overhead and compute speedup:

speedupDV MT =
Tbaseline

Tideal +OHHSW × SimDV MT
SimHSW

Do-It-Yourself Virtual Memory Translation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Benchmark Description
Graph500 Generation, compression and BFS of large graphs
GraphLab, Pow-
erGraph

Machine learning and data mining for graph analytics. Tunk
Rank, on a 45GB data set of Twitter users

GUPS Random memory accesses (HPC challenge)
memcached In memory key-value cache, using 60GB scaled Twitter data set
mongoDB Document database storing JSON-like documents with dynamic

schemes (45GB scaled YCSB data set)
Redis In-memory key-value DB (30GB YCSB dataset)
CG Conjugate gradient benchmark from the NAS suite

canneal, dedup PARSEC 3.0 compute benchmarks (native input set)
cactusADM, mcf SPEC 2006 benchmarks (ref input)

Table 2: List of benchmarks

Processor Dual socket Intel(R) Xeon(R) E5-2630v3 (HSW) @
2.40GHz 8cores/socket, SMT

Memory 128GB DDR4 2133 MHz
Operating system Ubuntu 14.04.3 LTS (kernel 3.12.13)
Hypervisor 2 cores QEMU version 2.5.5 with KVM
Guest OS Ubuntu 14.04.3(kernel 3.19.0-25)
L1 DTLB 4-way, 64 entries, 1 cy. hit-to-data
L2 STLB 8-way, 1024 entries, 7 cy. hit-to-data
Partial Walk Caches 3-level partial walk caches, native and virtual (Intel par-

lance: PML4, PDP, PDE, ePML4, ePDP, ePDE)
L1 I/D Cache 32KB,8-way, 64B block, 4 cy. hit-to-data
L2 Cache 256KB, 8-way, 64B block, 12 cy. hit-to-data
L3 Cache 20MB, 8-way, 64B block, 25 cy. hit-to-data

Table 3: Experimental configuration

We argue that scaling the measured run times by simulating both
DVMT and the Intel Haswell MMU is more representative of the
potential speedup than directly approximating the run times using
the simulated time (Simmmu) as Tideal +Simmmu. The reason is that
even if we perfectly simulate memory translations, looking only
at translations cannot account for the subtle interactions between
translation overheads, the executing cores (which may hide some of
the translation latency with out-of-order execution), and the OS (that
may invoke context switches and flush the MMU caches). Using
the simulator results as a scaling factor thus puts both simulated
models on equal footing and accounts for effects that are only ob-
served on a real system. Importantly, the scaling methodology is a
pessimistic approximation of DVMT speedup. For all benchmarks,
scaling provided lower performance gains than those obtained with
direct comparison of the simulated overheads alone.

The remainder of this section describes how we quantify the
translation overhead on a real system and how we approximate the
performance impact of DVMT. The benchmarks we used in this
study are listed in Table 2. Notably, GUPS serves as a stress test
due to its poor locality, which places near-maximal pressure on
the memory architecture, including translation; GUPS accentuates
translation overheads and allows for a way to consistently compare
schemes.

Quantifying translation overheads on a real system.
We quantify the memory translation overheads by measuring

applications run times on a real system (Table 3) and subtracting the
approximated run time of an ideal system with perfect TLBs.

We approximate the run time on an ideal system by configuring
the experimental platform to use huge 2MB pages with hugetlbfs,
which increases the reach of the TLB to minimize the number of TLB
misses without adding any of the management overheads associated

with transparent huge pages. Note that Haswell also supports 1GB
pages but only includes 4 TLB entries for them, which induces an
excessive number of TLB misses. Because a few TLB misses still
occur, we estimate the 2MB translation overhead using performance
counters that measure the number of cycles in which the page walker
(page miss handler in Intel parlance) was active. We deduct the 2MB
translation overhead from the measured run time to estimate the
ideal run time. Interestingly, even with 2MB pages the number of
TLB misses was negligible, and the page walker was only active 1%
of cycles on average. We note that this methodology is inspired by
that used by Basu et al. [10] and by Gandhi et al. [23].

Simulation platform.
Our memory translation simulator replays translation traces (TLB

misses) and models both DVMT and Haswell microarchitectures at
the cycle level (including all TLBs and PWCs). We approximate the
latency of Haswell’s page table walker, TLB, STLB, PWCs, and data
cache hierarchy by running a set of finely-tuned microbenchmarks on
our experimental platform. We simulate the DVMT helper threads
as running (pessimistically) in-order, and assume they can begin
fetching instructions in the cycle following the write to the PMR. To
model the memory access latencies of the page walker and DVMT,
we collect page walk accesses hit rates in different levels of the cache
hierarchy. We couple this information with a model for the latency
of each level of the hierarchy.

The simulator is driven by TLB miss traces obtained using a modi-
fied version of BadgerTrap [22]. The traces capture virtual addresses
that missed in all TLBs as well as the data cache hit rates tracked by
the processor’s performance counters [2]. The simulator determines
which memory locations are accessed during translation for each
TLB miss (for each mechanism, including any translation-specific
caches). For each memory access required for translation, the simu-
lator computes an access time. This is done by generating the cache
level that the access will hit in (based on the traced performance
counters statistics) and using the latency for that level (Table 3). For
DRAM, we measured average memory access latency on our system
and used a simple model for the hardware page walk and DVMT
DRAM access: 200 cycles with a random fuzz factor of ±20 cycles;
we also experimented with other latencies (100 and 300 cycles) and
did not observe substantial differences in the final speedup numbers.
Finally, the simulator mimics the physical frame allocation policy
used in the Linux kernel to map virtual pages to physical frames.

The simulated traces consist of a full run of the benchmark when
possible. For extremely long runs or, alternatively, client-server
benchmarks, we used traces consisting of at least 1010 instructions,
which represents the benchmark’s steady state running phase, and
normalized the various configurations to the same amount of work.
We use the performance counters to also estimate the overhead
associated with translation-related cache misses (averaged over short
time windows) and apply the same expected access times to the
DVMT schemes.

6 EVALUATION
In this section we present the evaluation of the DVMT architecture
using the translation schemes presented in Section 4.2.3. For DV-
MT{hash} we use a hashtable with 512K entries, or 8MB. We also
compare with the Haswell translation scheme, which we denote

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada H. Alam et al.

0.8x
1.0x
1.2x
1.4x
1.6x
1.8x
2.0x
2.2x
2.4x
2.6x
2.8x
3.0x
3.2x
3.4x

Sp
ee

d
u

p
 o

ve
r

H
as

w
el

l's
 g

X
8

6
-6

4
/h

X
8

6
-6

4

1. gDVMT{DS}/hDVMT{DS} 2. gDVMT{DS}/hDVMT{Flat} 3. gDVMT{DS}/hDVMT{Hash} 4. gDVMT{Flat}/hDVMT{Flat} 5. gDVMT{Flat}/hDVMT{Hash}

6. gDVMT{Hash}/hDVMT{Flat} 7. gDVMT{Hash}/hDVMT{Hash} 8. gX86-64/hDVMT{DS} 9. gX86-64/hDVMT{Flat} 10. gX86-64/hDVMT{Hash}

1 2 3 4 5 6 7 8 9 10

Figure 8: Speedups obtained with DVMT in virtualized environments over x86-64 virtualization (4K pages). The names of the trans-
lation schemes comprise both guest and host schemes as guest/host.

X86-64. We focus our discussion on the performance benefits of
DVMT in virtualized environments, and then briefly discuss native
environments. We conclude the evaluation with a short study of the
hashtable miss rates.

6.1 Virtualized environments
We evaluate the performance of DVMT using different combina-
tions of the possible translation schemes; we do not exhaustively
investigate all possible combinations and focus on sensible ones. All
methods use 4KB pages. A configuration that uses scheme A in the
guest and B in the host is denoted as gA/hB (e.g., gX86-64/hDVM-
T{hash} indicates X86-64 translation in the guest and DVMT{hash}
in the hypervisor).

Figure 8 depicts the speedups obtained by different guest/hy-
pervisor configurations over the conventional gX86-64/hX86-64
translation scheme.

Running unmodified guest VMs. We begin by examining un-
modified guest VMs with customized memory translation only in
the hypervisor (configurations 8–10 in the figure). Figure 8 shows
that applying DVMT only at the hypervisor level does not help appli-
cations whose virtual memory translations fit well in Haswell’s large
TLB and PWCs translation caches (e.g., dedup, mcf, cactusADM).

However, big-memory applications (e.g., PowerGraph, Mem-
cached, Redis) that overflow the translation caches do benefit from
DVMT’s custom translation schemes. For example, both Memcached
and Redis exhibit a speedup of ∼1.6× with gX86-64/hDVMT{flat}
and ∼2× with gX86-64/hDVMT{DS}. PowerGraph lags slightly
behind with a speedup of ∼1.5× with gX86-64/hDVMT{flat} and
∼1.6× with gX86-64/hDVMT{DS}. The direct-segment configu-
ration, however, requires that the VM emulated memory reside in
contiguous physical frames, which is not always possible.

On average, we see that for unmodified guests using DVMT{flat}
at the hypervisor level outperforms the DVMT{hash} (average
speedups of 1.4× vs. 1.2×). This is expected since the indirection
array in DVMT{flat} acts as a perfect hashtable. However, the flat ta-
ble requires significantly more memory capacity as it scales linearly

with application allocation compared to the fixed-size hashtable.
Some applications (e.g., MongoDB) do not benefit significantly
from “upgrading” from a hash to a flat table in the host and can
save memory capacity and perhaps increase cache hit rates for the
hashtable accesses. This demonstrates the benefits of the flexible
approaches made possible by software “doing it itself”. We discuss
this more in Section 6.3.

Custom translation in both guest and host. We now turn to
examine the benefits of DVMT for custom translation in both the
host and the guest. As discussed in Section 4.2.3, the fastest yet
most restrictive translation scheme is DVMT{DS}. Indeed, applying
the scheme to both guest and host in gDVMT{DS}/hDVMT{DS}
delivers the best speedups — 3.3× for memcached, 2.5× for canneal,
1.8× for MongoDB, 2.8× for Redis, and a whopping 8.6× for GUPS.
On average, this configuration delivers 2× speedup.

Memory management flexibility is crucial for hypervisors and D-
VMT{DS} is not a realistic choice as it requires contiguous physical
memory segment which interferes with memory utilization tech-
niques such as memory overcommit and deduplication. At the same
time, these hypervisor-level utilization techniques do make DV-
MT{DS} a reasonable choice for guest VMs. Guests may control
their own physical memory in a simple way and rely on the host to
optimize physical memory usage.

The gDVMT{DS}/hDVMT{flat} and gDVMT{DS}/hDVMT{hash}
DVMT configurations (configurations 2 and 3 in Figure 8) provide
the hypervisor with much greater flexibility to manage system mem-
ory. The big-memory applications such as Memcached, MongoDB,
and Redis still exhibit substantial speedups when using flexible
schemes at the hypervisor level. gDVMT{DS}/hDVMT{flat} de-
livers speedups of 2.7×, 1.5×, and 2.3× for these applications,
respectively. gDVMT{DS}/hDVMT{hash} delivers almost similar
performance — 2.5×, 1.5×, and 2.2×, respectively. Even PWC-
friendly workloads such as Dedup, cactusADM, and mcf benefit
from those configurations with speedups 1.1×, 1.2×, and 1.3×,
respectively, or higher.

Do-It-Yourself Virtual Memory Translation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

1
%

3
0

%

2
7

%

1
% 2
%

1
% 1
%

<1
%

1
%

<1
%

<1
%

7
%

6
%

2
% 6

%

2
%

2
%

<1
% 5

%

<1
%

<1
%

1
4

%

0%
5%

10%
15%
20%
25%
30%
35%

gD
V

M
T{

h
as

h
}-

h
D

V
M

T{
h

as
h

}
m

is
s

ra
te

s

Guest hashtable

Host hashtable

Figure 9: Miss rates in gDVMT{hash}/hDVMT{hash} with
512K entries each.

On average, we see that gDVMT{DS}/hDVMT{flat} and gD-
VMT{DS}/hDVMT{hash} gain ∼1.7× speedup. We also see that
the other configurations (indexed 4–7 in the figure) deliver average
speedups of 1.3–1.6×.

In summary, our evaluation demonstrates the performance ben-
efits of custom address translation in both guest VM and host. As
expected the best performing translation scheme is the rigid DV-
MT{DS}, but we also see that the alternative and more feasible
DVMT{flat} and DVMT{hash} provide good alternatives. As with
the X86-64 guest, we see that some applications are very sensitive
to the choice between a more expensive flat table and a cheaper
hashtable, while others are not.

6.2 Native environments
Using DVMT for native translation (i.e., without virtualization) pro-
vides little benefit. As Figure 3 shows, the TLB and PWC of Haswell
greatly reduce the overhead of native virtual memory translation and
leave little room for improvement. Our experiments show that D-
VMT{flat} and DVMT{hash} outperform x86-64 by up to 4% on
average, out of the total 12% translation overheads that x86-64
suffers from. DVMT{DS} eliminates the translation overheads al-
together but imposes major restrictions on memory management.
Importantly, no DVMT scheme underperforms x86-64.

6.3 Hashtable missrates
Figure 9 shows the hashtable miss rates at both the guest and host
levels when using gDVMT{hash}/hDVMT{hash}, each with 512K
entries. Most applications exhibit negligible miss rates even with a
hashtable that consumes just 8MB of memory. A few of the large
irregular applications, however, may benefit from larger hashtables
and exhibit high missrates. This explains the greater sensitivity these
applications show to the DVMT scheme because all hashtable misses
proceed as x86-64 TLB misses. It is also interesting to note that
the miss rate at the host is higher than that of the guest (with the
exception of GUPS). This is because each miss in the guest generates
two host accesses — one for translating the hashtable miss and
the other for translating the hashtable access itself; thus placing
greater pressure on the host hashtable. GUPS has completely random
memory access patterns and the miss rates are so high that they do
not follow the expected trend; the relative difference between them
is small.

7 CONCLUSIONS
Do-It-Yourself Virtual Memory Translation (DVMT) is an archi-
tecture for applications to customize their virtual-to-physical ad-
dress translation. DVMT facilitates translation customization by
decoupling memory protection validation from virtual-to-physical
mapping. Memory protection is implemented with a lightweight ca-
pability system that is managed by the OS and invoked by hardware.
This decoupling allows delegating the virtual-to-physical transla-
tion to an application helper thread that is co-scheduled with its
main thread. The helper thread wakes upon TLB misses using a
lightweight hardware synchronization mechanism.

We show that DVMT is particularly effective in virtualized envi-
ronments, in which translation overhead is higher. DVMT supports
memory optimization methods commonly used in hypervisors, in-
cluding paging, memory overcommit, and deduplication. We show
that various custom translation schemes speed up a number of big-
memory virtualized workloads by 1.2–2.0×.

We note that the DVMT translation thread effectively embodies
a programmable page table walker. Since we opted to focus this
paper on motivating custom virtual memory translation and show-
ing its performance benefits, DVMT uses a common multithreaded
processor design in which the translation thread runs on a separate
hardware context. A more sophisticated implementation can run the
translation thread on a small, programmable core that will replace
prevalent fixed hardware page table walkers.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments. We also
thank Lluìs Vilanova, Muli Ben-Yehuda, and Joseph Nuzman for
their insightful comments and feedback on the paper. This research
was funded by the Israel Science Foundation (ISF grant 769/12) and
the Israel Ministry of Science, Technology, and Space.

REFERENCES
[1] 2016. Intel© 64 and IA-32 Architectures Software Developer’s Manual.
[2] 2016. perf: Linux profiling with performance counters. https://perf.wiki.kernel.

org/index.php/Main_Page. (2016).
[3] Keith Adams and Ole Agesen. 2006. A comparison of software and hardware

techniques for x86 virtualization. In Intl. Conf. on Arch. Support for Programming
Languages & Operating Systems (ASPLOS). https://doi.org/10.1145/1168857.
1168860

[4] Advanced Micro Devices 2015. AMD64 Architecture Programmer’s Manual
(Volume 2). Advanced Micro Devices.

[5] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh. 2012. Revisiting hardware-
assisted Page Walks for virtualized systems. In Intl. Symp. on Computer Architec-
ture (ISCA). https://doi.org/10.1145/2366231.2337214

[6] ARM 2016. ARMv8 Architecture Reference Manual. ARM.
[7] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation caching:

skip, don’t walk (the page table). In Intl. Symp. on Computer Architecture (ISCA).
https://doi.org/10.1145/1815961.1815970

[8] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2011. SpecTLB: a mechanism for
speculative address translation. In Intl. Symp. on Computer Architecture (ISCA).
https://doi.org/10.1145/2000064.2000101

[9] Paul S. Barth, Rishiyur S. Nikhil, and Arvind. 1991. M-Structures: extending a
parallel, non-strict, functional language with state. In ACM Conf. on Functional
Programming Languages and Computer Architecture. https://doi.org/10.1007/
3540543961_26

[10] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.
Swift. 2013. Efficient virtual memory for big memory servers. In Intl. Symp. on
Computer Architecture (ISCA). https://doi.org/10.1145/2485922.2485943

[11] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. 2008.
Accelerating two-dimensional page walks for virtualized systems. In Intl. Conf.
on Arch. Support for Programming Languages & Operating Systems (ASPLOS).
https://doi.org/10.1145/1346281.1346286

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1145/1168857.1168860
https://doi.org/10.1145/1168857.1168860
https://doi.org/10.1145/2366231.2337214
https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/2000064.2000101
https://doi.org/10.1007/3540543961_26
https://doi.org/10.1007/3540543961_26
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/1346281.1346286

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada H. Alam et al.

[12] Abhishek Bhattacharjee. 2013. Large-reach memory management unit caches.
In Intl. Symp. on Microarchitecture (MICRO). https://doi.org/10.1145/2540708.
2540741

[13] Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi. 2011. Shared
last-level TLBs for chip multiprocessors. In Symp. on High-Performance Com-
puter Architecture (HPCA). https://doi.org/10.1109/HPCA.2011.5749717

[14] Abhishek Bhattacharjee and Margaret Martonosi. 2009. Characterizing the TLB
behavior of emerging parallel workloads on chip multiprocessors. In Intl. Conf.
on Parallel Arch. and Compilation Techniques (PACT). https://doi.org/10.1109/
PACT.2009.26

[15] Jeffrey Buell, Daniel Hecht, Jin Heo, Kalyan Saladi, and RH Taheri. 2013. Method-
ology for performance analysis of VMware vSphere under Tier-1 applications.
VMware Technical Journal 2, 1 (2013).

[16] Xiaotao Chang, Hubertus Franke, Yi Ge, Tao Liu, Kun Wang, Jimi Xenidis, Fei
Chen, and Yu Zhang. 2013. Improving virtualization in the presence of software
managed translation lookaside buffers. In Intl. Symp. on Computer Architecture
(ISCA). https://doi.org/10.1145/2485922.2485933

[17] Robert S. Chappell, Jared Stark, Sangwook P. Kim, Steven K. Reinhardt, and
Yale N. Patt. 1999. Simultaneous subordinate microthreading (SSMT). In Intl.
Symp. on Computer Architecture (ISCA). https://doi.org/10.1109/ISCA.1999.
765950

[18] Dawson Engler, Frans Kaashoek, and James O’Toole, Jr. 1995. Exokernel: an
operating system architecture for application-level resource management. In ACM
Symp. on Operating Systems Principles (SOSP). https://doi.org/10.1145/224056.
224076

[19] Dawson R. Engler, Sandeep K. Gupta, and Frans M. Kaashoek. 1995. AVM:
Application-level virtual memory. In Hot Topics in Operating Systems (HotOS).
https://doi.org/10.1109/HOTOS.1995.513458

[20] Zhen Fang, Lixin Zhang, John B Carter, Wilson C Hsieh, and Sally A McKee.
2001. Reevaluating online superpage promotion with hardware support. In Symp.
on High-Performance Computer Architecture (HPCA). https://doi.org/10.1109/
HPCA.2001.903252

[21] Narayanan Ganapathy and Curt Schimmel. 1998. General purpose operating
system support for multiple page sizes. In USENIX Ann. Tech. Symp. (ATC).
http://dl.acm.org/citation.cfm?id=1268256.1268264

[22] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift. 2014.
BadgerTrap: A Tool to Instrument x86-64 TLB Misses. Computer Architecture
News 42, 2 (Sept. 2014), 20–23. https://doi.org/10.1145/2669594.2669599

[23] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift. 2014.
Efficient memory virtualization: reducing dimensionality of nested page walks. In
Intl. Symp. on Microarchitecture (MICRO). https://doi.org/10.1109/MICRO.2014.
37

[24] Jayneel Gandhi, Mark D. Hill, and Michael M. Swift. 2016. Agile paging:
exceeding the best of nested and shadow paging. In Intl. Symp. on Computer
Architecture (ISCA). https://doi.org/10.1109/ISCA.2016.67

[25] Fei Guo, Seongbeom Kim, Yury Baskakov, and Ishan Banerjee. 2015. Proac-
tively breaking large pages to improve memory overcommitment performance
in VMware ESXi. In Intl. Conf. on Virtual Execution Environments (VEE).
https://doi.org/10.1145/2731186.2731187

[26] Bruce Jacob and Trevor Mudge. 1997. Software-managed address translation. In
Symp. on High-Performance Computer Architecture (HPCA). https://doi.org/10.
1109/HPCA.1997.569652

[27] Gokul B. Kandiraju and Anand Sivasubramaniam. 2002. Going the distance
for TLB prefetching: an application-driven study. In Intl. Symp. on Computer
Architecture (ISCA). https://doi.org/10.1109/ISCA.2002.1003578

[28] Vasileios Karakostas, Jayneel Gandhi, Adrián Cristal, Mark D. Hill, Kathryn S.
McKinley, Mario Nemirovsky, Michael M. Swift, and Osman S. Unsal. 2016.
Energy-efficient address translation. In Symp. on High-Performance Computer
Architecture (HPCA). https://doi.org/10.1109/HPCA.2016.7446100

[29] Henry M Levy. 1984. Capability-based computer systems. Digital Press.
[30] Daniel Lustig, Abhishek Bhattacharjee, and Margaret Martonosi. 2013. TLB

improvements for chip multiprocessors: Inter-core cooperative prefetchers and
shared last-level TLBs. ACM Trans. on Arch. & Code Optim. 10, 1 (2013).
https://doi.org/10.1145/2445572.2445574

[31] MIPS Technologies 2011. MIPS Architecture For Programmers Volume I-A:
Introduction to the MIPS32 Architecture. MIPS Technologies. Revision 3.02.

[32] David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechrest, Trevor Mudge, and
Richard Brown. 1993. Design tradeoffs for software-managed TLBs. In Intl.
Symp. on Computer Architecture (ISCA). https://doi.org/10.1145/165123.165127

[33] Binh Pham, Arup Bhattacharjee, Yasuko Eckert, and Gabriel H. Loh. 2014.
Increasing TLB reach by exploiting clustering in page translations. In Symp.
on High-Performance Computer Architecture (HPCA). https://doi.org/10.1109/
HPCA.2014.6835964

[34] Binh Pham, Ján Veselý, Gabriel H. Loh, and Abhishek Bhattacharjee. 2015. Large
pages and lightweight memory management in virtualized environments: can
you have it both ways?. In Intl. Symp. on Microarchitecture (MICRO). https:
//doi.org/10.1145/2830772.2830773

[35] Sagi Shahar, Shai Bergman, and Mark Silberstein. 2016. ActivePointers: A case
for software address translation on GPUs. In Intl. Symp. on Computer Architecture
(ISCA). https://doi.org/10.1109/ISCA.2016.58

[36] Madhusudhan Talluri and Mark D. Hill. 1994. Surpassing the TLB performance
of superpages with less operating system support. In Intl. Conf. on Arch. Support
for Programming Languages & Operating Systems (ASPLOS). https://doi.org/10.
1145/195473.195531

[37] Madhusudhan Talluri, Shing Kong, Mark D. Hill, and David A. Patterson. 1992.
Tradeoffs in supporting two page sizes. In Intl. Symp. on Computer Architecture
(ISCA). https://doi.org/10.1145/139669.140406

[38] Xiaolin Wang, Jiarui Zang, Zhenlin Wang, Yingwei Luo, and Xiaoming Li. 2011.
Selective hardware/software memory virtualization. In Intl. Conf. on Virtual
Execution Environments (VEE). https://doi.org/10.1145/1952682.1952710

[39] David L. Weaver and Tom Germond (Eds.). 1994. The SPARC Architecture
Manual (Version 9). Prentice Hall. SPARC International, Inc.

[40] Timothy Wood, Gabriel Tarasuk-levin, Prashant Shenoy, Peter Desnoyers, Em-
manuel Cecchet, and Mark D. Corner. 2009. Memory Buddies: exploiting page
sharing for smart colocation. In Intl. Conf. on Virtual Execution Environments
(VEE). https://doi.org/10.1145/1508293.1508299

[41] Idan Yaniv and Dan Tsafrir. 2016. Hash, don’t cache (the page table). In Intl.
Conf. on Measurement & Modeling of Computer Systems (SIGMETRICS). https:
//doi.org/10.1145/2896377.2901456

[42] Lixin Zhang, Evan Speight, Ram Rajamony, and Jiang Lin. 2010. Enigma:
architectural and operating system support for reducing the impact of address
translation. In ACM Intl. Conf. on Supercomputing. https://doi.org/10.1145/
1810085.1810109

https://doi.org/10.1145/2540708.2540741
https://doi.org/10.1145/2540708.2540741
https://doi.org/10.1109/HPCA.2011.5749717
https://doi.org/10.1109/PACT.2009.26
https://doi.org/10.1109/PACT.2009.26
https://doi.org/10.1145/2485922.2485933
https://doi.org/10.1109/ISCA.1999.765950
https://doi.org/10.1109/ISCA.1999.765950
https://doi.org/10.1145/224056.224076
https://doi.org/10.1145/224056.224076
https://doi.org/10.1109/HOTOS.1995.513458
https://doi.org/10.1109/HPCA.2001.903252
https://doi.org/10.1109/HPCA.2001.903252
http://dl.acm.org/citation.cfm?id=1268256.1268264
https://doi.org/10.1145/2669594.2669599
https://doi.org/10.1109/MICRO.2014.37
https://doi.org/10.1109/MICRO.2014.37
https://doi.org/10.1109/ISCA.2016.67
https://doi.org/10.1145/2731186.2731187
https://doi.org/10.1109/HPCA.1997.569652
https://doi.org/10.1109/HPCA.1997.569652
https://doi.org/10.1109/ISCA.2002.1003578
https://doi.org/10.1109/HPCA.2016.7446100
https://doi.org/10.1145/2445572.2445574
https://doi.org/10.1145/165123.165127
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1109/ISCA.2016.58
https://doi.org/10.1145/195473.195531
https://doi.org/10.1145/195473.195531
https://doi.org/10.1145/139669.140406
https://doi.org/10.1145/1952682.1952710
https://doi.org/10.1145/1508293.1508299
https://doi.org/10.1145/2896377.2901456
https://doi.org/10.1145/2896377.2901456
https://doi.org/10.1145/1810085.1810109
https://doi.org/10.1145/1810085.1810109

	Abstract
	1 Introduction
	2 On the need for custom memory translation: An x86-64 case study
	2.1 Memory translation overheads in X86-64
	2.2 The potential benefits of DIY virtual-to-physical translations

	3 Related Work
	4 The DVMT Architecture
	4.1 DVMT overview
	4.2 DVMT operation in native mode
	4.3 Extending DVMT to virtualized workloads

	5 Methodology
	6 Evaluation
	6.1 Virtualized environments
	6.2 Native environments
	6.3 Hashtable missrates

	7 Conclusions
	References

