
Inter-thread Communication in Multithreaded,
Reconfigurable Coarse-grain Arrays

Dani Voitsechov† Oron Port† Yoav Etsion†,§

†Electrical Engineering §Computer Science
Technion–Israel Institute of Technology

{dimavoi,soronpo,yetsion}@technion.ac.il

Abstract—Traditional von Neumann GPGPUs only allow threads
to communicate through memory on a group-to-group basis. In
this model, a group of producer threads writes intermediate
values to memory, which are read by a group of consumer
threads after a barrier synchronization. To alleviate the memory
bandwidth imposed by this method of communication, GPGPUs
provide a small scratchpad memory that prevents intermediate
values from overloading DRAM bandwidth.
In this paper we introduce direct inter-thread communications for
massively multithreaded CGRAs, where intermediate values are
communicated directly through the compute fabric on a point-
to-point basis. This method avoids the need to write values to
memory, eliminates the need for a dedicated scratchpad, and
avoids workgroup global barriers. We introduce our proposed
extensions to the programming model (CUDA) and execution
model, as well as the hardware primitives that facilitate the
communication. Our simulations of Rodinia benchmarks running
on the new system show that direct inter-thread communication
provides an average speedup of 2.8× (10.3× max) and reduces
system power by an average of 5× (22× max), when compared
to an equivalent Nvidia GPGPU.
Index Terms—CGRA, dataflow, GPGPU, SIMD, MPI, recon-
figurable -architectures,non-von Neumann-architectures,inter-
thread communication

I. INTRODUCTION

Conventional von Neumann GPGPUs employ the data-parallel
single-instruction multiple threads (SIMT) model. But pure
data parallelism can only go so far, and the majority of
data parallel workloads require some form inter-thread com-
munication. Common GPGPU programming models (e.g.,
CUDA, OpenCL) group threads into cooperative thread arrays
(CTAs, or workgroups), which enable threads in a CTA to
communicate using shared memory.
This model has two major limitations. First, communication is
mediated by a shared memory region, typically implemented
using a hardware scratchpad. It thus requires support for high
communication bandwidth and as such is energy costly. The
second limitation is the synchronization model. Since the
order of scheduling of the threads within a CTA is unknown,
a synchronization barrier must be invoked before consumer
threads can read the values written to the shared memory by
their respective producer threads.
As an alternative to von Neumann GPGPUs, Voitsechov and
Etsion [1], [2] recently introduced a coarse-grained reconfig-

This research was supported by the Israel Science Foundation (979/17).

urable GPGPU architecture (CGRA) coupled with a dataflow
execution model [3]–[5]. The proposed architecture, which
we refer to as a massively multithreaded CGRA (MT-CGRA),
maps the compute graph of CUDA kernels to a CGRA and
uses the dynamic dataflow execution model to run multiple
CUDA threads. The direct connectivity provided by the CGRA
fabric is leveraged to eliminate multiple von Neumann bot-
tlenecks, including the register file and instruction control.
Nevertheless, because the MT-CGRA model is still bound
by a shared memory and synchronization barriers for inter-
thread communication, it incurs their power and performance
overheads.
In this paper we present dMT-CGRA, an extension to
MT-CGRA that supports direct inter-thread communication
through the CGRA fabric. By extending the programming
model, the execution model, and the underlying hardware, the
new architecture forgoes the shared memory/scratchpad and
global synchronization operations.
dMT-CGRA extends CUDA with two primitives that enable
programmers to express direct inter-thread dependencies. The
primitives let programmers state that thread N requires a
value generated by thread N − k, for any arbitrary thread
index N and a scalar k. The compiler maps the programming
primitives to temporal links in the kernel’s dataflow graph.
The temporal links express dependencies between concurrently
executing instances of the dataflow graph, each representing
a different thread. Finally, two new functional units redirect
dataflow tokens between graph instances (threads) such that
the dataflow firing rule is preserved.
Our new architecture improves performance and energy con-
sumption by leveraging three distinct properties:
• Reduced memory bandwidth Replacing the shared mem-

ory with direct in-CGRA token routing reduces the shared
memory bandwidth and its associated energy consumption.

• Inter-thread data reuse Lightweight inter-thread commu-
nication allows threads to share data loaded from memory
using in-CGRA routing, and thus alleviates shared memory
traffic when serving as a software-managed cache.

• Code compaction Replacing shared memory with direct
inter-thread communication eliminates code associated with
address computations and boundary checks, and thus re-
duces the number of dynamic operations.

Overall, we show that dMT-CGRA outperforms NVIDIA
GPGPUs by 3× on average while consuming 5× less energy.
The remainder of this paper is organized as follows. Section II
describes the motivation for direct inter-thread communication
on an MT-CGRA and explains the rationale for the proposed
design. Section III then presents the dMT-CGRA execution
model and the proposed programming model extensions, and
Section IV presents the dMT-CGRA architecture. We present
our evaluation in Section V and discuss related work in
Section VI. Section VII concludes the paper.

II. INTER-THREAD COMMUNICATION IN A
MULTITHREADED CGRA

Modern massively multithreaded processors, namely GPGPUs,
employ many von-Neumann processing units to deliver mas-
sive concurrency, and use shared memory (a scratchpad) as the
primary means for inter-thread communication. This design
imposes two major limitations:

1) The frequency of inter-thread communication barrages
shared memory with intermediate results, requiring high
bandwidth support for the dedicated scratchpad and dra-
matically increasing its power consumption.

2) The inherently asynchronous memory decouples commu-
nication from synchronization and forces programmers to
use explicit synchronization primitives such as barriers,
which impede concurrency by forcing threads to wait
until all others have reached the synchronization point.

More flexible inter-thread communication is offered by the
dataflow computing model, which synchronizes computations
by coupling direct communication of intermediate values
between functional units with the dataflow firing rule. Our
proposed direct MT-CGRA (dMT-CGRA) architecture extends
the massively multithreaded CGRA (MT-CGRA) [1], [2] de-
sign, which employs the dataflow model, to support inter-
thread communication: whenever an instruction in thread A
sends a data token to an instruction in thread B, the latter
will not execute (i.e., fire) until the data token from thread A
has arrived. This simple use of the dataflow firing rule ensures
that thread B will wait for thread A. The dMT CGRA model
thus avoids costly communication with a memory scratchpad.
The existing internal buffers of the CGRA are utilized as a
fast, low-power medium for inter-thread communication, thus
allowing most communicated values to propagate directly to
their destination. Only a small fraction of tokens that cannot
be buffered in the fabric are spilled to memory. Moreover, by
coupling communication and synchronization using message-
passing extensions to SIMT programming models, dMT-
CGRA implicitly synchronizes point-to-point data delivery
without costly barriers.
The remainder of this section argues for the coupling of com-
munication and synchronization, and discusses why typical
programs can be satisfied by the internal CGRA buffering.

A. Dataflow and message passing

We demonstrate our dMT-CGRA message-passing extensions
using a separable convolution example [6] included in the

thread_code(thread_t tid) {
/ / common : n o t n e x t t o margin
i f (!is_margin(tid - 1) && !is_margin(tid + 1)) {
result[tid] = globalImage[tid-1] * kernel[0]

+ globalImage[tid] * kernel[1]
+ globalImage[tid+1] * kernel[2];

/ / c o r n e r : n e x t t o l e f t margin
} e l s e i f (is_margin(tid - 1)) {
result[tid] = globalImage[tid-1] * kernel[0]

+ globalImage[tid] * kernel[1];
/ / c o r n e r : n e x t t o r i g h t margin
} e l s e i f (is_margin(tid - 1)) {
result[tid] = globalImage[tid] * kernel[1];

+ globalImage[tid+1] * kernel[2];
}

}

(a) Spatial convolution using only global memory

thread_code() {
/ / map t h e t h r e a d t o 1D space (CUDA−s t y l e)
tid = threadIdx.x;
/ / l oad image i n t o sh ar ed memory
sharedImage[tid] = globalImage[tid];
/ / pad t h e marg ins w i t h z e r o s
i f (is_margin(tid))
pad_margin(sharedImage, tid);

/ / b l o c k u n t i l a l l t h r e a d s f i n i s h t h e load phase
barrier(): / / e . g . CUDA s y n c t h r e a d s
/ / e x e c u t e t h e c o n v o l u t i o n ; (k e r n e l p r e l o a d e d i n shmem)
result[tid] = sharedImage[tid-1] * kernel[0]

+ sharedImage[tid] * kernel[1]
+ sharedImage[tid+1] * kernel[2];

}

(b) Spatial convolution on a GPGPU using shared memory

thread_code() {
/ / map t h e t h r e a d t o 1D space (CUDA−s t y l e)
tid = threadIdx.x;
/ / l oad one e l e m e n t from g l o b a l memory
mem_elem = globalImage[tid];
/ / t a g t h e v a l u e o f t h e v a r i a b l e t o be s e n t ,
/ / i n case t h e v a r i a b l e g e t s r e w r i t t e n .
tagValue<mem_elem>();
/ / w a i t f o r t o k e n s from t h r e a d s t i d +1 and t i d−1
lt_elem = fromThreadOrConst<mem_elem, / * t i d * /-1,0>();
rt_elem = fromThreadOrConst<mem_elem, / * t i d * /+1,0>();
/ / e x e c u t e t h e c o n v o l u t i o n
result[tid] = lt_elem * kernel[0]

+ mem_elem * kernel[1]
+ rt_em * kernel[2];
} el

(c) Spatial convolution on a MT-CGRA using thread cooperation

Fig. 1: Implementation of a separable convolution [6]) using
various inter-thread data sharing models. For brevity, we
focus on 1D convolutions, which are the main and iterative
component in the algorithm.

NVIDIA software development kit (SDK) [7]. This convolu-
tion applies a kernel to an image by applying 1D convolutions
on each image dimension. For brevity, we focus our discussion
on a single 1D convolution with a kernel of size 3. The
example is depicted using pseudo-code in Figure 1.
Separable convolution can be implemented using global mem-
ory, shared memory, or a message-passing programing model.
The trivial parallel implementation, presented in Figure 1a,
uses global memory. If the entire kernel falls within the image

margins, the matrix elements should be simply multiplied
with the corresponding elements of the convolution kernel.
If either thread-id (TID) TID - 1 or TID + 1 is outside the
margins, its matching element should be zero. Although this
naive implementation is very easy to code, it results in multiple
memory accesses to the image, which are translated to high
power consumption and low performance.
GPGPUs use shared memory to overcome this problem, as
shown in Figure 1b. Each element of the matrix is loaded
once and stored in the shared memory (sharedImage array in
the code). The image margins are then padded with zeros. A
barrier synchronization must then be used to ensure that all
threads finished loading their values. Only after the barrier can
the actual convolution be computed. Nevertheless, although
the computation phase does not require access to the global
memory, the lack of direct inter-thread communication forces
redundant accesses the the pre-loaded shared memory, as each
image and kernel element is loaded by multiple threads.
A dataflow architecture, on the other hand, can seamlessly in-
corporate a message-passing framework for inter-thread com-
munication. Figure 1c demonstrates how separable convolution
can be implemented in dMT-CGRA. The message-passing
primitive allows threads to request the values of other threads’
variables. Given the underlying single-instruction multiple-
threads (SIMT) model, threads are homogeneous and execute
the same code (with diverging control paths). Each thread first
loads one matrix element to a register (as opposed to the shared
memory write in Figure 1b).
Once the element is loaded, the thread goes on to wait for
values read from other threads. The programmer must tag
the version of the named variable (in case the variable is
rewritten) that should be available to remote threads using the
tagValue call. Thread(s) can then read the remote value using
the fromThreadOrConst() call (see Section III-A for the full
API), which takes three arguments: the name of the remote
variable, the thread ID from which the value should be read,
and a default value in case the thread ID is invalid (e.g., a
negative thread ID). As in CUDA and OpenCL, thread IDs
are mapped to multi-dimensional coordinates (e.g., threadIdx
in CUDA [8]) and Thread IDs are encoded as constant deltas
between the source thread ID and the executing thread ID.
Communication calls are therefore translated by the compiler
to edges in the code’s dataflow graph representing dependen-
cies between instances of the graph (i.e., threads). This process
turns the data transfers into the underlying dataflow firing
rule (to facilitate compile-time translation, the arguments are
passed as C++ template parameters).
The strength of the model lies in this implicit embedding
of the communication into the dataflow graph. Values can
be forwarded directly between threads by the dMT-CGRA
processor, eliminating the need for shared-memory mediation.
In addition, the embedding allows threads to move to the
computation phase once their respective values are ready, inde-
pendently of other threads. Since no barriers are required, the
implicit dataflow synchronization does not impede parallelism.

/ / IDs i n a t h r e a d b l o c k are mapped t o 2D space (e . g . , CUDA)
thread_code() {

/ / map t h e t h r e a d t o 2D space (CUDA−s t y l e)
tx = threadIdx.x;
ty = threadIdx.y;
/ / l oad A and B i n t o sh ar ed memory
sharedA[tx][ty] = A[tx][ty];
sharedB[tx][ty] = B[tx][ty];
/ / b l o c k u n t i l a l l t h r e a d s f i n i s h t h e load phase
barrier(): / / e . g . CUDA s y n c t h r e a d s
/ / compute an e l e m e n t i n sharedC (d o t p r o d u c t)
sharedC[tx][ty] = 0;
f o r(i=0; i<K; i++)
sharedC[tx][ty] += sharedA[tx][i]*sharedB[i][ty];

}
/ / w r i t e back d o t p r o d u c t r e s u l t t o g l o b a l memory
C[tx][ty] = sharedC[tx][ty]

}

(a) Matrix multiplication on a GPGPU using shared memory.

thread_code() {
/ / mapping t h e t h r e a d t o 2D space (CUDA−s t y l e)
tx = threadIdx.x;
ty = threadIdx.y;
/ / compute memory a c c e s s p r e d i c a t e s
En_A = (tx == 0);
En_B = (ty == 0);
/ / compute t h e d o t p r o d u c t . t h e loop i s s t a t i c a l l y
/ / u n r o l l e d t o compute t h e i n d i c e s a compi le−t i m e
C[ty][tx] = 0;

#pragma unroll
f o r(i=0; i<K; i++) {
a = fromThreadOrMem<{0, -1}>(A[tx][i], En_A);
b = fromThreadOrMem<{1, 0}>(B[i][ty], En_B);
C[ty][tx] += a*b;

}
}

(b) Dense matrix multiplication on the dMT-CGRA architecture using
direct inter-thread communication.

Fig. 2: Multiplications of dense matrices C = A × B
using shared memory on a GPGPU and direct inter-thread
communication on an MT-CGRA. Matrix dimensions are
(N ×M) = (N ×K)× (K ×M).

B. Forwarding memory values between threads

Multiple concurrent threads often load the same multiple
addresses, stressing the memory system with redundant loads.
The synergy between a CGRA compute fabric and direct inter-
thread communication eliminates this problem by enabling
dMT-CGRA to forward values loaded from memory through
the CGRA fabric. Figure 2 illustrates this property using
matrix multiplication as an example. The figure depicts the
implementation of a dense matrix multiplication C = A× B
on a GPGPU and on dMT-CGRA. In both implementations
each thread computes one element of the result matrix C.
Figure 2a demonstrates how the classic GPGPU implementa-
tion stresses memory. The implementation concurrently copies
the data from global memory to shared memory and executes
a synchronization barrier (which impedes parallelism), after
which each thread computes one element in the result matrix
C. Consequently, each element in the source matrices A and
B, whose dimensions are N ×K and K ×M , respectively,
is accessed by all threads that compute a target element in C
whose coordinates correspond to either its row or column. As

Fig. 3: The flow of data in dMT-CGRA for a 3x3 marix
multiplication. The physical CGRA is configured with the
dataflow graph (bottom layer), and each functional unit in the
CGRA multiplexes operations from different instances (i.e.,
threads) of the same graph.

a result, each element is loaded by N ×M threads.
We introduce a new memory-or-thread communication prim-
itive to eliminate these redundant memory accesses. The
new primitive uses a compile-time predicate that determines
whether to load the value from memory or to forward the
loaded value from another thread. The dMT-CGRA toolchain
maps the operation to special units in the CGRA (described
in Section IV) and, using the predicate, configures the CGRA
to route the correct value.
Figure 2b depicts an implementation of a dense matrix mul-
tiplication using the proposed primitive. Each thread in the
example computes one element in the destination matrix C,
and the programming model maps each thread to a spatial co-
ordinate (as in CUDA/OpenCL). Rather than a regular memory
access, the code uses the fromThreadOrMem primitive, which
takes two arguments: a predicate, which determines where
to get the value from, and a memory address, from which
the required value should be loaded. The primitive also uses
one parameter, a two-dimensional coordinate that indicates the
thread from which the data may be obtained (the coordinates
are encoded as the multi-dimensional difference between the
source thread and the executing thread’s coordinates).
Finally, Figure 3 illustrates the flow of data between threads
for a 3×3 matrix multiplication. While the figure shows a copy
of the dataflow graph for each thread, we remind the reader
that the underlying dMT-CGRA is configured with a single

dataflow graph and executes multiple threads by moving their
tokens through the graph out-of-order, using dynamic dataflow
token-matching. As each thread computes one element in
target matrix C, threads that compute the first column load
the elements of matrix A from memory, and the threads that
compute the first row load the elements of matrix B. As the
figure shows, threads that load values from memory forward
them to other threads. For example, thread (0, 2) loads the
bottom row of matrix A and forwards its values to thread
(1, 2), which in turn sends them to thread (2, 2).
The combination of a multithreaded CGRA and direct inter-
thread communication thus greatly alleviates the load on the
memory system, which plagues massively parallel processors.
The following sections elaborate on the design of the pro-
gramming model, the dMT-CGRA execution model, and the
underlying architecture.

III. EXECUTION AND PROGRAMMING MODEL

This section describes the dMT-CGRA execution model and
the programming model extensions that support direct data
movement between threads.
The MT-CGRA execution model: The MT-CGRA execu-
tion model combines the static and dynamic dataflow models
to execute single-instruction multiple-thread (SIMT) programs
with better performance and power characteristics than von
Neumann GPGPUs [1]. The model converts SIMT kernels into
dataflow graphs and maps them to the CGRA fabric, where
each functional unit multiplexes its operation on tokens from
different instances of a dataflow graph (i.e., threads).
An MT-CGRA core comprises a host of interconnected func-
tional units (e.g., arithmetic logical units, floating point units,
load/store units). Its architecture is described in Section IV.
The interconnect is configured using the program’s dataflow
graph to statically move tokens between the functional units.
Execution of instructions from each graph instance (thread)
thus follows the static dataflow model. In addition, each
functional unit in the CGRA employs dynamic, tagged-token
dataflow [5], [9] to dynamically schedule different threads’
instructions. This prevents memory stalled threads from block-
ing other threads, thereby maximizing the utilization of the
functional units.
Prior to executing a kernel, the functional units and intercon-
nect are configured to execute a dataflow graph that consists of
one or more replicas of the kernel’s dataflow graph. Replicat-
ing the kernel’s dataflow graph allows for better utilization
of the MT-CGRA grid. The configuration process itself is
lightweight and has negligible impact on system performance.
Once configured, threads are streamed through the dataflow
core by injecting their thread identifiers and CUDA/OpenCL
coordinates (e.g., threadIdx in CUDA) into the array. When
those values are delivered as operands to successor functional
units they initiate the thread’s computation, following the
dataflow firing rule. A new thread can thus be injected into
the computational fabric on every cycle.
Inter-thread communication on an MT-CGRA: As de-
scribed above, the MT-CGRA execution model is based on

/ / r e t u r n t h e tagged−t o k e n f o r a g i v e n t i d
<token, tag> = elevator_node(tid) {

/ / does t h e s o u r c e t i d f a l l s w i t h i n t h e t h r e a d b l o c k ?
i f (in_block_boundaries(tid - ∆)) {

/ / v a l i d s o u r c e t i d ? w a i t f o r t h e t o k e n .
token = wait_for_token(tid - ∆);
re turn <token, tid>;

} e l s e {
/ / i n v a l i d s o u r c e t i d ? push t h e c o n s t a n t v a l u e .
re turn <C, tid>;

}
}

Fig. 4: The functionality of an elevator node (with a ∆ TID
shift and a fallback constant C).

dynamic, tagged-token dataflow, where each token is coupled
with a tag. The multithreaded model uses TIDs as token tags,
which allows each functional unit to match each thread’s
input tokens. The crux of inter-thread communication is thus
reduced to changing a token’s tag to a different TID.
We implement the token re-tagging by adding special elevator
nodes to the CGRA. Like an elevator, which shifts people
between floors, the elevator node shifts tokens between TIDs.
An elevator node is a single-input, single-output node and is
configured with two parameters — a ∆TID and a constant
C. The functionality of the node is described as pseudo-
code in Figure 4 (and is effectively the implementation of the
fromThreadOrConst function first described in Figure 1c). For
each downstream TID, the node generates a tagged token
consisting of the value obtained from the input token for
TID−∆. If TID−∆ is not a valid TID in the thread block,
the downstream token consists of a preconfigured constant C.
The elevator node thus communicates tokens between threads
whose TIDs differ by ∆, which is extracted at compile-time
from either the fromThreadOrConst or fromThreadOrMem
family of functions (Section III-A). These inter-thread com-
munication functions are mapped by the compiler to elevator
nodes in the dataflow graph and to their matching counterparts
in the CGRA.
Each elevator node includes a small token buffer. This buffer
serves as a single-entry output queue for each target TID.
The ∆TID that a single elevator node can support is thus
limited by the token buffer size. To support ∆TIDs that
are larger than a single node’s token buffer, we design the
elevator nodes so that they can be cascaded, or chained.
Whenever the compiler identifies a ∆TID that is larger than
a single elevator node’s token buffer, it maps the inter-thread
communication operation to a sequence of cascading elevator
nodes. In extreme cases where ∆TID is too large even for
multiple cascaded nodes, dMT-CGRA falls back to spilling
the communicated values to the shared memory. Cascading of
elevator nodes is further discussed in Section IV.
Nonetheless, our experimental results show that inter-thread
communication patterns exhibit locality across the TID space,
and that values are typically communicated between threads
with adjacent TID (a Euclidean distance was used for 2D and
3D TID spaces). Figure 5 shows the cumulative distribution

15, 0.58

16, 0.87

0.0

0.2

0.4

0.6

0.8

1.0

0 32 64 96 128 160 192 224 256

P
ro

b
ab

ili
ty

Transmission Distance

Fig. 5: Cumulative distribution function (CDF) of delta lengths
across various benchmarks. 87% of the code we evaluated
communicates across ∆TID of 16, indicating strong commu-
nication locality.

function (CDF) of the ∆TIDs exhibited by the benchmarks
used in this paper (the benchmarks and methodology are de-
scribed in Section V-A). The figure shows that the commonly
used delta values are small and a token buffer of 16 is enough
to support 87% of the benchmarks with no need to cascade
elevator nodes. However, 42% of the transmission distances
are greater than 15. Thus, a GPU shuffle/permute operation,
which moves data between execution lanes, is not enough.
This is because, in a 32-lane GPU SM it will leave 50% of
the threads without a producer.
The second functional unit required for inter-thread commu-
nication is the enhanced load/store unit (eLSU). The eLSU
extends a regular LSU with a predicated bypass, allowing it
to return values coming either from memory or from another
thread (through an elevator unit). An eLSU coupled with
an elevator unit (or multiple thereof) thus implements the
fromThreadOrMem primitive.

A. Programming model extensions

We enable direct inter-thread communication by extending the
CUDA/OpenCL API. The API, listed in Table I, allows threads
to communicate with any other thread in a thread block. In
this section we describe the three components of the API.

B. Communicating intermediate values

The fromThreadOrConst and tagValue functions enable
threads to communicate intermediate values in a producer-
consumer manner. The function is mapped to one or more
elevator nodes, which send a tagged token downstream once
the sender thread’s token is received. This behavior blocks the
consumer thread until the producer thread sends the token. The
fromThreadOrConst function has two variants. The variants
share three template parameters: the name of the variable to
be read from the sending thread, the ∆TID between the
communicating threads (which may be multi-dimensional),
and a constant to be used if the sending TID is invalid or
outside the transmission window.
The transmission window is defined as the span of TIDs that
share the communication pattern. The second variant of the
fromThreadOrConst function allows the programmer to bound
the window using the win template parameter. We define
the transmission window as follows: the fromThreadOrConst
function encodes a monotonic communication pattern between
threads, e.g., thread TID produces a value to thread TID+∆,

Function Description
token fromThreadOrConst<variable, TID∆, constant>() Read variable from another thread, or constant if the thread does not exist.
token fromThreadOrConst<variable, TID∆, constant, win>() Same as above, but limit the communication to a window of win threads.
void tagValue<variable>() Tag a variable value that will be sent to another thread.

token fromThreadOrMem<TID∆>(address, predicate) Load address if predicate is true, or get the value from another thread.
token fromThreadOrMem<TID∆, win>(address, predicate) Same as above, but limit the communication to a window of win threads.

TABLE I: API for inter-thread communications. Static/constant values are passed as template parameters (functions that require
∆TID have versions for 1D, 2D, and 3D TID spaces).

LD

ST

+

(a) The static dMT-CGRA mapping when
executing prefix-sum (scan).
thread_code() {

/ / mapping t h e t h r e a d t o
/ / 1D space (CUDA−s t y l e)
tid = threadIdx.x;
/ / l oad one v a l u e (LD)
/ / from g l o b a l memory
mem_val = inArray[tid];
/ / add t h e lo ad ed v a l u e t o
/ / t h e sum so f a r
sum =
fromThreadOrConst<sum,-1,0>()
+ mem_val;
tagValue<sum>();
/ / s t o r e p a r t i a l sum t o g l o b a l memory
prefixSum[tid] = sum;

}

(b) Prefix sum implementation using inter
thread communication.

LD

ST

+

LD

ST

+

LD

ST

+

Thread-ID=1

Thread-ID=2

Thread-ID=0

...

(c) The dynamic
execution of prefix
sum.

Fig. 6: Example use of the tagValue function.

which produces a value to thread TID+2×∆, and so forth. The
transmission window is defined as the maximum difference
between TIDs that participate in the communication pattern.
For a window of size win, the thread block will be partitioned
into consecutive thread groups of size win, e.g., threads
[TID0 . . . T IDwin−1], [TIDwin . . . T ID2×win−1], and so on.
The communication pattern TID → TID + ∆ will be
confined to each group, such that (for each n) thread
TIDn×win−1 will not produce a value, and thread TIDn×win

will receive the default constant value rather than wait for
thread TIDn×win−∆.
Bounding the transmission window is useful to group threads
at the sub-block level. In our benchmarks (Section V-A), for
example, we found grouping useful for computing reduction
trees. A bounded transmission window enables mapping dis-
tinct groups of communicating threads to separate segments
at each level of the tree.
The tagValue function is used to tag a specific value (or
version) of the variable passed to fromThreadOrConst. The
call to tagValue may be placed before or after the call to

fromThreadOrConst, as shown in the prefix sum example
depicted in Figure 6 (the example is based on the NVIDIA
CUDA SDK [7]). The prefix sum problem takes an array a
of values and, for each element i in the array, sums the array
values a[0] . . . a[i]. The code in Figure 6b uses the tagValue to
first compute an element’s prefix sum, which depends on the
value received from the previous thread, and only then sends
the result to the subsequent thread. Figure 6a illustrates the
resulting per-thread dataflow graph, and Figure 6c illustrates
the inter-thread communication pattern across multiple threads
(i.e., graph instances). The resulting pattern demonstrates how
decoupling the tagValue call from the fromThreadOrConst call
allows the compiler to schedule the store instruction in parallel
with the inter-thread communication, thereby exposing more
instruction-level parallelism (ILP).

C. Forwarding memory values

The fromThreadOrMem function allows threads that load the
same memory address to share a single load operation. The
function takes ∆TID as a template parameter, and an address
and predicate as run time evaluated parameters (the function
also has a variant that allows the programmer to bound the
transmission window). Using the predicate, the function can
dynamically determine which threads will issue the actual load
instruction, and which threads will piggyback on the single
load and get the resulting value forwarded to them. A typical
use of the fromThreadOrMem function is shown in the matrix
multiplication example in Figure 2b. In this example, the
function allows for only a single thread to load each row and
each column in the matrices, and for the remaining threads
to receive the loaded value from that thread. In this case,
the memory forwarding functionality reduces the number of
memory accesses from N ×K ×M to N ×M .

D. Programming complexity

Parallel programming is not trivial, and the proposed model
is no exception. Nevertheless, the model is unencumbered by
microarchitectural constraints and only requires the program-
mer to understand the parallel algorithm at hand. This is in
contrast to inter-thread communication in contemporary GPG-
PUs, which requires programmers to consider the memory
system microarchitecture alongside the parallel algorithm. A
full quantitative comparison of the two models is an interesting
research trajectory. However, since this paper focuses on
the model’s performance and energy benefits, a qualitative
comparison of the two programming models is out of scope.

CU
SJ

U

CU

CU
SJ

U

SJ
U

Co
m

pu
te

Co
m

pu
te

Lo
ad

/S
to

re

Load/Store

.....

SCU

SCU

SCU

SCU

SCU

SCU

SCU

SCU

L1

LVC

Live value units

Live value units

SCU-Special Compute Unit
CU-Control Unit LVC-Live Value Cache

SJU-Split/Join Unit

(a) A VGIW MT-CGRA core
(b) A typical MT-
CGRA unit

Fig. 7: MT-CGRA core overview

IV. THE DMT-CGRA ARCHITECTURE

This section describes the dMT-CGRA architecture, focusing
on the extensions to the baseline MT-CGRA [1] required to
facilitate inter-thread communication. Figure 7 illustrates the
high-level structure of the MT-CGRA architecture.
The MT-CGRA core itself, presented in Figure 7a, is a grid of
functional units interconnected by a statically routed network
on chip (NoC). The core configuration, the mapping of instruc-
tions to functional units, and NoC routing are determined at
compile-time and written to the MT-CGRA when the kernel
is loaded. During execution tokens are passed between the
various functional units according to the static mapping of
the NoC. The grid is composed of heterogeneous functional
units, and different instructions are mapped to different unit
types in the following manner: memory operations are mapped
to the load/store units, computational operations are mapped
to the floating point units and ALUs (compute units), control
operations such as select, bitwise operations and comparisons
are mapped to control units (CU), and split and join operations
(used to preserve the original intra-thread memory order) are
mapped to Split/Join units (SJU).
During the execution of parallel tasks on an MT-CGRA core,
many different flows representing different threads reside in
the grid simultaneously. Thus, the information is passed as
tagged tokens composed from the data itself and the associated
TID, which serves as a tag. The tag is used by the grid’s nodes
to determine which operands belong to which threads.
Figure 7b illustrates the shared structure of the different units.
While the functionality of the units differ, they all include
tagged-token matching logic to support thread interleaving
through dynamic dataflow. Specifically, tagged tokens arrive
from the NoC and are inserted into the token buffer. Once
all operands for specific TIDs are available, they are passed
to the unit’s logic (e.g., access memory in LSUs, compute in
ALU/FPU). When the unit’s logic completes its operation, the
result is passed as a tagged token back to the grid through the
unit’s crossbar switch.

transmission
window size

delta tid Data

ctrl

o_tid

o_data

Datatid

token buffer

tid
base

indx Data valid
bits

CONST

MUX

Fig. 8: An elevator node stores the in-flight tokens in the unit’s
token buffer. A controller manipulates TIDs and controls the
value of the output tokens.

In this paper we introduce two new units to the grid —
the elevator node and the enhanced load/store unit (eLSU).
While existing units may manipulate the token itself, they
do not modify the tag itself because they must preserve the
association between tokens and threads. The two new units
facilitate inter-thread communication by modifying the tags
of existing tokens.
Figure 8 and Figure 9 depict the elevator node and eLSU
nodes, respectively. We introduce these new nodes to the grid
by converting the existing control nodes to elevator nodes
and LSUs to eLSUs. The conversion only includes adding
combinatorial logic to the existing units, since all units in the
grid already have an internal opcode register and token buffers.
The logic added to the control units to support elevation
operations comprises a few registers that store delta constants
and a multiplexer. LSUs also require simple control logic.
The overall area overhead for these units is below 3%, and
the total overhead is below 0.1%. The power consumption is
dramatically reduced with comparison to the basic MT-CGRA
design, since tokens do not travel via the NoC but are instead
rerouted back into the token buffer (see Figure 15 for the
fraction of energy spent in the NoC).

A. Elevator node

The elevator node, depicted in Figure 8, implements the
fromThreadOrConst function, which communicates interme-
diate values between threads. When mapping fromThreadOr-
Const call, the node is configured with the call’s ∆TID
and default constant value. An elevator node receives tokens
tagged with a TID and changes the tag to TID+∆ according
to its preconfigured ∆. It then sends the resulting tagged token
downstream.
In the most common case, the node receives an input token
from one thread and sends the retagged token to another
thread. In this case, threads serve as both data producers,
sending a token to a consumer thread, and as consumers, wait-
ing for a token from another producer thread. Alternatively, a
thread TID may not serve as a producer if its target thread’s
ID, TID + ∆, is invalid or outside the current transmission

token buffer

transmission
window size

delta

tid
base

tidEn

LSU ctrl

indx

tid data

Data valid
bits

M
U

X

Addr

L1

$

data

tid

Fig. 9: An eLSU node, consisting of an LSU with an additional
adder to manipulate the TID, and a comparator to test whether
the result is outside the margins. The En input (predicate)
determines whether a new value should be introduced. The
output is looped back in to create new tokens with higher
TIDs with the same data loaded by a previous thread.

window. Correspondingly, when the sending thread’s ID (e.g.,
TID − ∆) is outside the transmission window, the elevator
node injects the preconfigured constant to the tagged token
sent downstream. For threads that both produce and consume
tokens, the controller passes the input token to its receiver
by modifying the tag from TID to TID + ∆ and pushing
the resulting tagged token to the TID + ∆ entry in the
token buffer. In addition, the original input TID should be
acknowledged by marking the thread as ready in the token
buffer. Alternatively, if a thread TID simply needs to receive
the predefined constant value as a token, the controller pushes
a tagged token comprising the constant and TID to the token
buffer. In this case, setting the acknowledged bit does not
require an extra write port to the token buffer but only the
ability to turn two bits at once.

B. Enhanced load/store unit (eLSU)

The eLSU is used to implement the fromThreadOrMem func-
tion, which enables threads to reuse memory values loaded by
another thread without issuing redundant memory accesses.
Figure 9 presents the eLSU, which is a LSU enhanced with
control logic that determines whether the token should be
brought in from memory or from another thread’s slot in the
token buffer. The eLSU operates as follows: if the Enable
(En) input is set, the receiving thread will access the memory
system and load the data. Otherwise, if the En is not set, the
thread’s TID will either be added to the token buffer, where it
will wait for another thread to write the token, or the controller
will find the token holding the data fetched from memory
waiting in the token buffer. In the latter scenario, the thread
may continue its flow through the dataflow graph. When the
eLSU produces an output token, the token is duplicated and
one copy is internally parsed by the node’s logic. While the
original token is passed on downstream in the MT-CGRA, ∆
is added to the TID of the duplicated token. If the resulting
TID is equal to or smaller than the transmission window, the

 =16

 <token,tid>

transmission distance = 18
token buffer = 16

 <token,tid+16>

 = 2

 <token,tid+18>

(a) Cascading elevator nodes to
manage a ∆TID that is larger
than the token buffer.

 =16

 <token,tid>

 <token,tid+16>

 = 2

 <token,tid+18>

i1i0

LD en

i1i0

sel

sel

P

(b) When a fromThreadOrMem
procedure needs to deal with
∆ larger than the token buffer
size, the function will be
mapped to a cascade of pred-
icated elevator nodes in a
closed cycle.

Fig. 10: Cascading elevator nodes

tagged token will be pushed to the token buffer. Otherwise,
the duplicated token will be discarded since its consumer is
outside the transmission window. Using this scheme, each
value is loaded once from memory and reused windowsize

∆
times, significantly reducing the memory bandwidth.

C. Supporting large transmission distances

The dMT-CGRA architecture uses the token buffers in elevator
and eLSU nodes to implement inter-thread communication.
During compilation, the compiler examines the distance be-
tween the sending thread and the receiving thread repre-
sented as the ∆TID passed to the fromThreadOrConst or
fromThreadOrMem functions. If the distance is smaller or
equal to the size of the token buffer, the fromThreadOrConst
or fromThreadOrMem calls will be mapped to a single elevator
node or eLSDT unit, respectively. But if ∆TID is larger than
the token buffer, the compiler must cascade multiple nodes to
support the large transmission distance.
Long distances in fromThreadOrConst calls: In the rare
instance that a fromThreadOrConst function needs to commu-
nicate values. a fromThreadOrConst function needs to commu-
nicate values over a transmission distance that is larger than
the size of the token buffer, the compiler cascades multiple
elevator nodes (effectively chaining their token buffers) in
order to support the required communication distance.
Figure 10a shows such a scenario. The required transmission
distance in the figure is 18, but the token buffer can only
hold 16 entries. The compiler handles the longer distance by
mapping the operation to two cascaded elevator nodes. The
compiler further configures the ∆TID of the first node to 16
(the token buffer size) and that of the second one to 2, resulting
in the desired cumulative transmission distance of 18.

Parameter Value

dMT-CGRA Core 140 interconnected compute/LDST/control units
Computational units 32 ALUs, 32 FPUs, 12 Special Compute units
Load/Store units 32 eLDST Units
Control units 16 Split/Join units, 16 Control/Elevator units
Frequency [GHz] core 1.4, Interconnect 1.4, L2 0.7, DRAM 0.924
L1 64KB, 32 banks, 128B/line, 4-way
L2 786KB, 6 banks, 128B/line, 16-way
GDDR5 DRAM 16 banks, 6 channels

TABLE II: dMT-CGRA system configuration.

In the general case of a transmission window that is larger
than the token buffer size, the number of cascaded units will
be

⌈
TID∆

Token Buffer Size

⌉
. In extreme cases, where the ∆TID

is so large that it requires more elevator nodes that are available
in the CGRA, the communicated values will be spilled to the
Live Value Cache, a compiler managed cache used in the MT-
CGRA architecture [2]. This approach is similar to the spill
fill technique used in GPGPUs.
Long distances in fromThreadOrMem procedures: By
default, fromThreadOrMem calls are mapped to eLSU nodes.
Unlike the elevator node the eLSU cannot simply be cascaded
because it acts as a local buffer for its in-flight memory
accesses. For example, in Figure 3 the columns of matrix B
are loaded by the first three threads and transmitted over a
distance of 3 threads (∆TID = 3). In this case, while the
third thread loads its data, the eLSU must be able to hold on
the first two loaded values in order to transmit them later. This
requires a token buffer of at least 3 entries. A system with a
smaller token buffer would require external buffering.
The additional external buffer is constructed by mapping the
operation to a loop of cascaded elevator nodes. As depicted
in Figure 10b, the loop is enclosed by control nodes serving
as MUXs. To reuse memory values of distant threads the
output of the terminating MUX is connected to the input of
the first MUX. In this scenario the compiler will map the
load instruction to a predicated load-store unit. The predicate
passed to the fromThreadOrMem will serve as the selector for
the MUXs. When the predicate evaluates to false, the original
memory value is looped back through the second MUX back to
the elevator node cascade. A value originating from the TID
entering the cascade will be retagged with the target thread
ID TID +

∑
i ∆i. The sum of the elevator node ∆TID

therefore accounts for the required communication distance.
Nevertheless, as shown in Figure 5, the typical ∆TID fits
inside the eLSU’s token buffer.

V. EVALUATION

This section presents our evaluation of the dMT-CGRA archi-
tecture. We first discuss the impact of dMT-CGRA on memory
bandwidth and code complexity, and then present their impli-
cations on overall performance and energy efficiency.

A. Methodology

Simulation framework: We used the GPGPU-Sim sim-
ulator [10] and GPUWattch [11] power model (which uses
performance monitors to estimate the total execution energy)

Application Description Memory Lower Less
reuse mem. BW code

scan Prefix sum
matrixMul Matrix multiplication
conv Convolution filter
reduce Parallel Reduction
lud Matrix decomposition
srad Speckle Reducing

Anisotropic Diffusion
BPNN Neural network training
hotspot Thermal simulation tool
pathfinder Find the shortest path

on a 2-D grid

TABLE III: The benchmarks used in this study and how
they benefit from the dMT-CGRA architecture. Memory reuse
marks kernels in which inter-thread communication was used
to eliminate redundant memory accesses; Lower Mem. BW
marks kernels that benefit from direct inter-thread commu-
nication rather than indirect, shared-memory based commu-
nication; and Fewer insts. marks kernels whose code was
simplified (i.e., executed fewer instructions) by using direct
inter-thread communication primitives.

to evaluate the performance and power of the dMT-CGRA, the
MT-CGRA and the GPU architecture. These tools model the
NVIDIA GTX480 card, which is based on NVIDIA Fermi.
We extended GPGPU-Sim to simulate a MT-CGRA core
and a dMT-CGRA core, and we used per-operation energy
estimates obtained from RTL place&route results for the new
components to extend the power model of GPUWattch to
support the MT-CGRA and dMT-CGRA designs.
As a baseline, we compared dMT-CGRA with NVIDIA Fermi
and the VGIW architecture [2], an MT-CGRA architecture
without direct inter-thread communication. Although Fermi is
not the newest NVIDIA architecture, it is the only one with
an open, validated power model [11].
The system configuration is shown in Table II. By replacing
the Fermi SM with a dMT-CGRA core, we retain the non-core
components. For consistency, the amount of logic comprising a
dMT-CGRA core is similar to the amount found in an NVIDIA
SM and in an SGMF/VGIW MT-CGRA core. The amount of
SRAM in both the MT-CGRA and dMT-CGRA is smaller than
that used in an NVIDIA SM, since the GPU’s RF is replaced
with memory structures that consume less than 50% of the
SRAM (50KB of token buffers, 64 KB LVC, 8KB CVT).
Compiler: We compiled CUDA kernels using LLVM [12]
and extracted their SSA [13] code. This was then used to
configure the dMT-CGRA grid and interconnect.
Benchmarks: Of the 21 benchmarks in Rodinia 3.1 [14],
two thirds (14 benchmarks) use shared memory, and only two
of them require dynamic deltas (<10%). Thus, the scheme pro-
posed in this paper would be beneficial for approximately half
of the benchmarks. We evaluated dMT-CGRA using a diverse
set of kernels with different characteristics taken from both
the Rodinia benchmark suite and the NVIDIA SDK [7].The
kernels are listed in Table III. The table also highlights how
the different benchmarks benefit from dMT-CGRA, whether
due to memory reuse, lower memory bandwidth, or executing

0

5

10

15

20
M

e
m

o
ry

 t
ra

ff
ic

[x
]

shared

global
G
P
U

M
T-
CG
RA

dM
T-
CG
RA

G
P
U

M
T-
CG
RA

dM
T-
CG
RA

G
P
U

M
T-
CG
RA

dM
T-
CG
RA

G
P
U

M
T-
CG
RA

dM
T-
CG
RA

G
P
U

M
T-
CG
RA

dM
T-
CG
RA

G
P
U

M
T-
CG
RA

dM
T-
CG
RA

G
P
U

M
T-
CG
RA

dM
T-
CG
RA

G
P
U

M
T-
CG
RA

dM
T-
CG
RA

G
P
U

M
T-
CG
RA

dM
T-
CG
RA

G
P
U

M
T-
CG
RA

dM
T-
CG
RA

scan matMul conv reduce lud srad BPNN hotspot pathfinder GEOMEAN

Fig. 11: Number of words read/written from/to memory
(shared and global) normalized to the number of words com-
municated to/from the global memory in the Fermi baseline

0

0.5

1

1.5

2

2.5

scan matMul conv reduce lud srad BPNN hotspot pathfinder GEOMEAN

ex
e

cu
te

d
 o

p
s.

[x
] MT-CGRA

dMT-CGRA

Fig. 12: A comparison of the number of dynamic operations
executed on dMT-CGRA and the baseline architectures.

less code. All evaluated kernels use shared memory and can
be expressed with static deltas.

B. Reduced memory bandwidth

Figure 11 depicts the amount of data read/written from the
global and shared memory. As expected, the shared mem-
ory serves most of the bandwidth on NVIDIA GPGPUs.
Furthermore, in VGIW, the shared memory address space is
mapped to global memory, to which all the data bandwidth
is directed. In contrast, dMT-CGRA and its programming
model extensions confine almost all data transfers inside the
execution fabric and dramatically reduce the costly transfers
of data to shared and global memory.
The figure thus demonstrates how dMT-CGRA can dramat-
ically reduce memory bandwidth by eliminating the shared
memory as an intermediary for inter-thread communication
(e.g., scan, convolution). In addition, direct inter-thread com-
munication allows threads to reuse memory values already
loaded by others (e.g., matrixMul, lud). We will discuss
the impact of the reduced memory bandwidth on overall
performance and energy consumption later in this section.

C. Reduced operations count

Direct inter-thread communication eliminates redundant ad-
dress calculation needed for shared-memory based commu-
nications, redundant boundary checks, and shared-memory
based reduction operations. Figure 12 compares the number of
dynamic operations executed on each architecture (with Fermi
as a baseline) and shows that for most of the benchmarks this
number is dramatically reduced. This is most pronounced in
scan, where direct inter-thread communication eliminates a
substantial fraction of the code that performs data reduction.
In contrast, for matrixMul, which only benefits from memory

0

1

2

3

4

5

Scan matMul conv reduce lud srad BPNN hotspot pathfinder GEOMEAN

Sp
e

e
d

u
p

 [
X

]

MT-CGRA

dMT-CGRA

10.3

Fig. 13: Speedups obtained with dMT-CGRA compared to the
baseline architectures.

reuse, the reduction is negligible since it simply replaces mem-
ory load instructions with direct communication primitives.
Overall, the figure shows that dMT-CGRA reduces the number
of executed operations by ∼75% on average compared to a
Fermi GPGPU.

D. Performance analysis

The performance of any processor depends on the number of
instructions it executes and on the utilization of its functional
units. As shown above, dMT-CGRA reduces number of dy-
namic operations executed by each benchmark. Furthermore,
memory reuse across threads (e.g., matrixMul) reduces long
memory latencies that may affect utilization. Finally, spatial
architectures are not bound by instruction fetch width and reg-
ister file bandwidth and can thereby operate all the functional
units on the grid. For example, a spatial architecture composed
of 140 functional units can theoretically deliver 140

32 ≈ 4.4×
higher IPC than an equivalent 32-wide GPGPU .
Figure 13 demonstrates the performance speedups obtained
by dMT-CGRA over the baseline architectures. For the most
part, performance correlates with thereduction in the number
of operations shown in Figure 12. In addition, benchmarks
that exhibit memory reuse (e.g., matrixMul) benefit from
increased performance because of the reduction in global
memory bandwidth. Conversely, benchmarks that exhibit low
ILP/TLP (e.g., scan) have little performance benefit despite
the reduction in the number of operations. Overall, Figure 13
shows that dMT-CGRA outperforms NVIDIA Fermi by 2.8×
on average (up to 10.3×).
The heterogeneous composition of the MT-CGRA functional
units makes it difficult to achive full utilization, since different
workloads have different instruction mixes. For example, while
the pathfinder kernel utilizes 100% of the available ALU units,
it does not perform any floating point computations leaving the
FP unit idle. Although we fixed the composition of functional
units to match that of NVIDIA Fermi for a fair comparison,
customizing the functional unit composition in dMT-CGRA
can potentially deliver better performance gains.

E. Energy efficiency analysis

We now compare the energy efficiency of the evaluated
architectures. Since the different architectures use different in-
struction set architectures (ISAs), we define energy efficiency
as the total energy required to execute the benchmark.

0

1

2

3

4

5

6

Scan matMul conv reduce lud srad BPNN hotspot pathfinder GEOMEAN

En
e

rg
y

ef
fi

ci
e

n
cy

 [
X

] MT-CGRA

dMT-CGRA

8 22

Fig. 14: Energy efficiency of a dMT-CGRA core over a VGIW
MT-CGRA core and Fermi SM.

G
PU

M
T-
CG

RA

dM
T-
CG

RA

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

250%

reduce lud srad BPNN hotspot pathfinder Average

En
e

rg
y

b
re

ak
d

o
w

n

others
FDS
DRAM
L2
COMP
NOC
RF
SHMEM
L1
others
FDS
DRAM

G
PU

M
T-
CG

RA

dM
T-
CG

RA

G
PU

M
T-
CG

RA

dM
T-
CG

RA

G
PU

M
T-
CG

RA

dM
T-
CG

RA

G
PU

M
T-
CG

RA

dM
T-
CG

RA

G
PU

M
T-
CG

RA

dM
T-
CG

RA

G
PU

M
T-
CG

RA

dM
T-
CG

RA

Fig. 15: Energy consumption across core components.

Figure 14 shows the overall energy efficiency of dMT-CGRA
and MT-CGRA compared to Fermi. The figure demonstrates
the efficiency of dMT-CGRA, which is on average 5× more
energy efficient than Fermi (2.8× for MT-CGRA). The best
energy reduction is obtained for the scan kernel imple-
mentation using inter-thread communication. Even though
this benchmark does not benefit from a major performance
improvement due to low ILP/TLP, its energy efficiency is
improved by almost 22× thanks to the reduction in memory
access overhead and in the number of operations (attributed to
the elimination of the complex tree reduction algorithm shown
in Figure 6).
We now examine the average energy consumption of the core
components. The energy breakdown for all benchmarks on the
three architectures is shown in Figure 15, but for brevity we
focus on three representative benchmarks in Figure 16. Specif-
ically, Figure 16a shows the energy breakdown for matrixMul
(Figure 2), which benefits from data reuse; Figure 16b shows
the breakdown for convolution (Figure 1), which benefits from
a reduction in shared memory bandwidth and in the number
of operations; and Figure 16c shows the breakdown for scan
(Figure 6), which primarily benefits from the reduction in the
number of operations. The pie charts are normalized to the
energy consumed by Fermi for each task. The reduced energy
is marked as the SAVED portion in each pie chart.
When executed on Fermi all benchmarks waste much of the
energy on von Neumann artifacts, namely the pipeline (fetch-
decode-schedule, or FDS), the shared memory (SHMEM),
the register file (RF), and the data movement among them
(included in FDS). As a result, the inefficient Fermi spends
only about 14% of its energy on the functional units them-
selves (COMP). The MT-CGRA architecture variants, on the

GPU MT-CGRA dMT-CGRA

L1 SHMEM RF NOC COMP

L2 DRAM FDS others SAVED

(a) Matrix multiplication energy breakdown

GPU MT-CGRA dMT-CGRA

(b) Convolution energy breakdown

GPU MT-CGRA dMT-CGRA

(c) Scan (prefix-sum) energy breakdown

Fig. 16: The energy breakdown of three representative bench-
marks

other hand, eliminate most of the these von-Neumann artifacts.
However, the regular MT-CGRA’s reliance on memory as a
communication medium forces it to spend a lot of energy
(about 80% of the total for matrixMul, convolution and Prefix-
sum) on its energy on the memory system (L1,L2 and DRAM).
Furthermore, the excess memory traffic causes additional traf-
fic on the NoC and increases the NoC’s energy consumption.
Finally, dMT-CGRA is shown to be much more energy ef-
ficient than its competitors. The direct inter-thread commu-
nication primitives eliminate most of the energy consumed
by excessive data transfers to memory (L1, L2, DRAM,
and NOC) and also eliminate the von Neumann artifacts.
Furthermore, we see that the computational units also consume
less energy thanks to the reduction in the number of opera-
tions (Section V-C). Ultimately, dMT-CGRA incurs the lower
overhead for management and control of the computation than
do Fermi and MT-CGRA, as its functional units consume an
average of 32% of its total energy.
To conclude, our evaluation demonstrates the performance
and power benefits of the dMT-CGRA architecture over a
von Neumann GPGPU (NVIDIA Fermi) and an MT-CGRA
without the support of inter-thread communication.

VI. RELATED WORK

Dataflow architectures and CGRAs:
There is a rich body of work on the potential of dataflow based
engines in general, and CGRAs in particular. DySER [15],
SEED [16], and MAD [17] extend von-Neumann based pro-
cessors with dataflow engines that efficiently execute code
blocks in a dataflow manner. Garp [18] adds a CGRA compo-
nent to a simple core in order to accelerate loops. TRIPS [19],
WaveScalar [20] and Tartan [21] portion the code into hy-
perblocks, which are scheduled according to the dependencies
between them. Stream-dataflow [22] and R-GPU [23] are static
dataflow architectures which pipeline instances of simple tasks
through a reconfigurable execution engine. These architectures
mainly leverage their execution model to accelerate single-
threaded performance. However, TRIPS and WaveCache [21]
enable multi-threading. TRIPS by scheduling different threads
to different tiles on the grid and WaveCache by pipelining
instances of hyperblocks originating from different threads.
Nevertheless, none of the mentioned architectures supports
simultaneous dynamic dataflow execution of threads on the
same grid. While SGMF [1] and VGIW [2] do support
simultaneous dynamic multithreaded execution on the same
grid, they do not support inter-thread communication.
Message passing and inter-core communication:
Support of inter-thread communication is vital when im-
plementing efficient parallel software and algorithms. The
MPI [24] programing model is perhaps the most scalable and
popular message passing programing model. Many studies
implemented hardware support for fine-grain communication
across cores. The MIT Alewife machine [25], MIT Raw [26],
ADM [27], CAF [28] and the HELIX-RC architecture [29]
add an integrated hardware to multi-core systems, in order to
provide fast communication and synchronization between the
cores, whereas XLOOPS [30] provides hardware mechanisms
to transfer loop-carried dependencies across cores. These prior
works have explored hardware assisted techniques to support
communication between cores. In this paper we applied the
same principles in a massively multithreaded environment and
implemented communication between threads.
Inter-thread communication:
To enable decoupled software pipelining in sequential algo-
rithms, DWSP [31] adds a synchronization buffer to support
value communication between threads. The NVIDIA, AMD
and HSA ISAs offer support for inter-thread communication
within a wavefront (warp) using shuffle/permute instructions,
as described in the relevant programing guides [8], [32],
[33]. However, this form of communication is limited to data
transfers within a wavefront and cannot be used to synchronize
between threads since all threads within a wavefront execute in
lockstep. Nevertheless, the addition of such instructions in the
SIMT programing models, even if limited in scope, demon-
strates the need for inter-thread communication in GPGPUs.

VII. CONCLUSIONS

Redundant memory accesses are a major bane for throughput
processors. Such accesses can be attributed to two major

causes: using the memory for inter-thread communication, and
having multiple threads access the same memory address.
In this paper we introduce direct inter-thread communica-
tion to the previously proposed multithreaded coarse-grain
reconfigurable array (MT-CGRA) [1], [2]. The proposed dMT-
CGRA architecture eliminates redundant memory accesses by
allowing threads to directly communicate through the CGRA
fabric. The direct inter-thread communication eliminates the
use of memory as a communication medium and allows
threads to directly forward shared memory values rather than
invoke redundant memory loads.
dMT-CGRA obtains average speedups of 3.2× and 2.8×
over MT-CGRA and NVIDIA GPGPUs, respectively. At the
same time, dMT-CGRA reduces energy consumption by an
average of 63% compared to MT-CGRA and 80% compared
to NVIDIA GPGPUs.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their comments and
suggestions. We thank Reut Zigdon Voitsechov for helping
with the graphics. We also thank Oren Kalinsky, Lluis Vi-
lanova, Nimrod Wald and Liraz Blumenkrantz Mencell for
their valuable feedback and help throughout this research. This
research was supported Israel Science Foundation (ISF grant
979/17).

REFERENCES

[1] D. Voitsechov and Y. Etsion, “Single-graph multiple flows: Energy
efficient design alternative for GPGPUs,” in Intl. Symp. on Computer
Architecture (ISCA), 2014.

[2] D. Voitsechov and Y. Etsion, “Control flow coalescing on a hybrid
dataflow/von Neumann GPGPU,” in Intl. Symp. on Microarchitecture
(MICRO), 2015.

[3] R. M. Karp and R. E. Miller, “Properties of a model for parallel
computations: determinacy, termination, queueing,” SIAM J. Applied
Mathematics, vol. 14, Nov 1966.

[4] J. B. Dennis and D. Misunas, “A preliminary architecture for a basic
data flow processor,” in Intl. Symp. on Computer Architecture (ISCA),
1975.

[5] Arvind and R. Nikhil, “Executing a program on the MIT tagged-token
dataflow architecture,” IEEE Trans. on Computers, vol. 39, Mar 1990.

[6] V. Podlozhnyuk, “Image convolution with CUDA,” NVIDIA, Tech. Rep.,
Jun 2007.

[7] NVIDIA, “CUDA SDK code samples.” [Online]. Available:
http://developer.download.nvidia.com/compute/cuda/ sdk/website/sam-
ples.html

[8] CUDA Programming Guide v7.0, NVIDIA, Mar 2015.
[9] Y. N. Patt, W. M. Hwu, and M. Shebanow, “HPS, a new microarchi-

tecture: rationale and introduction,” in Intl. Symp. on Microarchitecture
(MICRO), 1985.

[10] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator.” in IEEE
Intl. Symp. on Perf. Analysis of Systems and Software (ISPASS), 2009.

[11] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: enabling energy optimizations
in GPGPUs,” in Intl. Symp. on Computer Architecture (ISCA), 2013.

[12] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Intl. Symp. on Code Generation
and Optimization (CGO), 2004.

[13] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck, “Efficiently computing static single assignment form and the
control dependence graph,” ACM Trans. on Programming Languages
and Systems, vol. 13, 1991.

[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IEEE Intl. Symp. on Workload Characterization (IISWC), 2009.

[15] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in Symp. on High-
Performance Computer Architecture (HPCA), Feb 2011.

[16] T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Exploring the
potential of heterogeneous von neumann/dataflow execution models,”
in Intl. Symp. on Computer Architecture (ISCA). ACM, Jun 2015.

[17] C.-H. Ho, S. J. Kim, and K. Sankaralingam, “Efficient execution of
memory access phases using dataflow specialization,” in Intl. Symp. on
Computer Architecture (ISCA), Jun 2015.

[18] T. J. Callahan and J. Wawrzynek, “Adapting software pipelining for
reconfigurable computing,” in Intl. Conf. on Compilers, Architecture,
and Synthesis for Embedded Systems, 2000.

[19] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP, and DLP with
the polymorphous TRIPS architecture,” in Intl. Symp. on Computer
Architecture (ISCA), 2003.

[20] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “WaveScalar,”
in Intl. Symp. on Microarchitecture (MICRO), Dec 2003.

[21] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, M. Budiu,
and S. C. Goldstein, “Tartan: Evaluating spatial computation for whole
program execution,” in Intl. Conf. on Arch. Support for Prog. Lang. &
Operating Systems (ASPLOS), Oct 2006.

[22] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-dataflow acceleration,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture. ACM, 2017.

[23] G.-J. V. D. Braak and H. Corporaal, “R-gpu: A reconfigurable gpu
architecture,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 13, 2016.

[24] Message Passing Interface Forum, “MPI: A message-passing interface
standard,” Jun 2015, version 3.1.

[25] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz,
J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung, “The MIT
alewife machine: Architecture and performance,” in Intl. Symp. on
Computer Architecture (ISCA), 1995.

[26] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
“The Raw microprocessor: a computational fabric for software circuits
and general-purpose programs,” IEEE Micro, vol. 22, 2002.

[27] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible architectural support
for fine-grain scheduling,” in Intl. Conf. on Arch. Support for Prog. Lang.
& Operating Systems (ASPLOS), 2010.

[28] Y. Wang, R. Wang, A. Herdrich, J. Tsai, and Y. Solihin, “CAF: Core to
core communication acceleration framework,” in Intl. Conf. on Parallel
Arch. and Compilation Techniques (PACT), 2016.

[29] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G.-Y. Wei, and
D. Brooks, “HELIX-RC: An architecture-compiler co-design for auto-
matic parallelization of irregular programs,” in Intl. Symp. on Computer
Architecture (ISCA), 2014.

[30] S. Srinath, B. Ilbeyi, M. Tan, G. Liu, Z. Zhang, and C. Batten, “Archi-
tectural specialization for inter-iteration loop dependence patterns,” in
Intl. Symp. on Microarchitecture (MICRO), Dec 2014.

[31] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August, “Decou-
pled software pipelining with the synchronization array,” in Intl. Conf.
on Parallel Arch. and Compilation Techniques (PACT), 2004.

[32] AMD, “Vega instruction set architecture, reference guide,”
2017. [Online]. Available: https://gpuopen.com/amd-vega-instruction-
set-architecture-documentation/

[33] HSA, “HSA programmer’s reference manual: HSAIL virtual ISA and
programming model, compiler writer, and object format (BRIG),” 2017.
[Online]. Available: http://www.hsafoundation.com/standards/

